509.斐波那契数
斐波那契数 (通常用
F(n)表示)形成的序列称为 斐波那契数列 。该数列由0和1开始,后面的每一项数字都是前面两项数字的和。也就是:F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n > 1给定
n,请计算F(n)。示例 1:
输入:n = 2 输出:1 解释:F(2) = F(1) + F(0) = 1 + 0 = 1示例 2:
输入:n = 3 输出:2 解释:F(3) = F(2) + F(1) = 1 + 1 = 2示例 3:
输入:n = 4 输出:3 解释:F(4) = F(3) + F(2) = 2 + 1 = 3
- 难度评价: ⭐
- 代码如下:
方法一_递归
class Solution {
public:
int fib(int n) {
if (n == 0)
return 0;
if (n == 1)
return 1;
return fib(n - 1) + fib(n - 2); //DP思想:大问题分解成小问题再解决小问题
}
};
class Solution {
public:
int fib(int n)
{ //更简洁的递归
return n < 2 ? n : fib(n - 1) + fib(n - 2);
}
};
方法二_滚动数组
class Solution {
public:
int fib(int n)
{ //滚动数组思想模拟数列增长过程
if (n < 2)
return n;
int a = 0, b = 1, c = 0;
int i = 0;
while ((i++) <= n - 2) //先增后比较
{
c = a + b;
a = b;
b = c;
}
return c;
}
};
70.爬楼梯
假设你正在爬楼梯。需要
n阶你才能到达楼顶。每次你可以爬
1或2个台阶。你有多少种不同的方法可以爬到楼顶呢?示例 1:
输入:n = 2 输出:2 解释:有两种方法可以爬到楼顶。 1. 1 阶 + 1 阶 2. 2 阶示例 2:
输入:n = 3 输出:3 解释:有三种方法可以爬到楼顶。 1. 1 阶 + 1 阶 + 1 阶 2. 1 阶 + 2 阶 3. 2 阶 + 1 阶
- 难度评价: ⭐⭐
- 代码如下:
代码1:递归。运行正确,n=44时超时。
class Solution
{
public:
int climbStairs(int n)
{
//递归超时
//0层到0层和0层到1层各都只有1种方案
if (n == 0 || n == 1)
return 1;
//因为一次可以上一层或两层,所以上到第n层的方案数是上到第n-1层和上到第n-2层的方案的和
return climbStairs(n - 1) + climbStairs(n - 2);
}
};
代码2:动态规划
class Solution
{
public:
int climbStairs(int n)
{
//解法2:dp
//1.本题中dp[n]的意义:上到第n级阶梯的可行方案数
//2.转移方程:上到第n级阶梯的可行方案数 = 上到第n-1级阶梯的可行方案数 + 上到第n-2级阶梯的可行方案数
//3.边界条件:第0级阶梯开始,上到第0级阶梯有一种方案,即上0级阶梯;上到第1级阶梯有一种方案,即上1级阶梯
/*即dp[n]是由dp[n-1]和dp[n-2]转移来的。如上到第2级阶梯可以从第0级直接上两阶;也可以先上1级,再上1级,共两种方案
由转移方程dp[2] = dp[1] + dp[0] = 1 + 1 = 2*/
int dp[n + 1]; //+1后数组的可用索引最高才是n
dp[0] = 1;
dp[1] = 1;
for (int i = 2; i <= n; i++)
{
dp[i] = dp[i-2] + dp[i-1];
}
return dp[n];
}
};
448

被折叠的 条评论
为什么被折叠?



