
今天我们来看一下神经网络中的反向传播算法,之前介绍了梯度下降与正向传播~ 神经网络的反向传播
专栏:💎实战PyTorch💎
反向传播算法(Back Propagation,简称BP)是一种用于训练神经网络的算法。
反向传播算法是神经网络中非常重要的一个概念,它由Rumelhart、Hinton和Williams于1986年提出。这种算法基于梯度下降法来优化误差函数,利用了神经网络的层次结构来有效地计算梯度,从而更新网络中的权重和偏置。
基本工作流程:
- 通过正向传播得到误差,所谓正向传播指的是数据从输入到输出层,经过层层计算得到预测值,并利用损失函数得到预测值和真实值之前的误差。<