神经网络反向传播算法

本文详细介绍了神经网络中的反向传播算法,包括其工作流程、梯度计算和在PyTorch中的应用示例。通过实例演示了如何使用反向传播更新神经网络的权重,以及nn.Linear类的使用和参数初始化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天我们来看一下神经网络中的反向传播算法,之前介绍了梯度下降与正向传播~       神经网络的反向传播

专栏:💎实战PyTorch💎

反向传播算法(Back Propagation,简称BP)是一种用于训练神经网络的算法。 

反向传播算法是神经网络中非常重要的一个概念,它由Rumelhart、Hinton和Williams于1986年提出。这种算法基于梯度下降法来优化误差函数,利用了神经网络的层次结构来有效地计算梯度,从而更新网络中的权重和偏置。

基本工作流程:

  1. 通过正向传播得到误差,所谓正向传播指的是数据从输入到输出层,经过层层计算得到预测值,并利用损失函数得到预测值和真实值之前的误差。<
评论 42
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小森( ﹡ˆoˆ﹡ )

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值