重点:有序!!有序!!有序!!
在我们编译代码的时候经常会遇到在有序的数组中查找一个数字或那个数字的下表进行输出。那么我们在这时候会想到,进行查询,套个for循环一个个进行查找不就可以了嘛!
#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
int main()
{
int a[10] = { 1,2,3,4,5,6,7,8,9,10 };
int i = 0, k = 0;
int flag = 0;
scanf("%d",&k);
//输入需要查找的数据。
for (i = 0; i < 10; i++)
{
flag = 0;
if (k == a[i])
{
flag = 1;
break;
//若查找到需要的数字就进行弹出
}
}
if (flag)
printf("%d", i);
else
printf("没找到");
}
注意!!!代码的运行也是要和速度挂钩的!一个程序的运行速度越快,说明程序的越简洁,那么如何把有序查找进行优化呢?
这就要讲讲折半查找的原理了
在有序的数组中,都是按照大小顺序进行排列,如果是有序的状态下,我们需要查找的数字和中间的数字进行对比,如果和中间数字相比,我们需要的数字比较小,那就在左边,如果相比较之下大,那就再数字的右边。依次类推,进行多次折半查找就可以找到我们需要的数字了!
此时的left定位的左边,right在数组的右边
假如我们输入数字为6
数组a[mid]与6进行对比
发现a[mid]小于6
那么left和mid进行重新计算
进行新的一轮判断
a [mid] > 6
所以我们就需要right进行重新定位。
进行新的判断后我们可以得知,我们已经找到了6的所在地。
这样就减少了我们的循环次数!!
那么我们在什么情况下进行循环了??!那么就进入错误的情况进入循环,假如我们输入的数字为12
经过分析后,我们可以得到程序代码;
int main()
{
int left = 0, right = 0, mid = 0;
int a[10] = { 1,2,3,4,5,6,7,8,9,10 };
int k = 0;
scanf("%d", &k);
left = 0;
right = sizeof(a) / sizeof(a[0]);
while (left <= right)
{
mid = (left + right) / 2;
if (a[mid] == k)
{
printf("下标为%d", mid);
break;//找到我们需要的数字后进行跳出,要不然会死循环!!
}
else if (a[mid] > k)
{
right = mid -1;
}
else
{
left = mid + 1;
}
}
if (left > right)
printf("没找到");
}
这样我们就可以找到我们需要找到的数字了!!!
再次提醒:只能在有序的情况下判断!!!!!!,如果是无序的话mid就未必是中间的数字咯!!!