- 博客(4)
- 收藏
- 关注
原创 论文阅读:Accurate Image Super-Resolution Using Very Deep Convolutional Networks
第二,在收敛时,残差网络表现出更优越的性能。残差和非残差网络在10个时期后表现出巨大的性能差距(速率0.1为36.90,而速率为27.42)总之,这种对标准无残差网络结构的简单修改是非常强大的,并且可以在其他输入和输出图像高度相关的图像复原问题中探索该思想的有效性。1.感受野: 是指卷积神经网络中,特征图上的一个像素点,其在原始输入图像上所能“看到”的区域大小,在CNN中,随着网络层数的加深,特征图上的每个点都是由前一层的一个区域计算得出,而前一层的那一区域又是由更前一层的一个更大区域计算得出。
2025-10-21 10:23:26
896
原创 论文阅读:Performance Benchmarking of YOLOv11 Variants for Real-Time Delivery Vehicle Detection...
在GPU和CPU上,使用平均跨交并比( Intersection over Union,IoU )阈值从50 %到95 % (一个范围定义了预测边界框和真实边界框之间的重叠)的平均精确率( mAP ,衡量检测精度的标准量度)、精确率、召回率和推理速度等指标评估性能。由三个关键组件组成。最后,头部组件,它根据处理后的特征图生成用于目标定位和分类的最终输出。与传统的两阶段方法(如Faster R-CNN )不同,YOLOv将目标提案生成和分类分开,并将这些过程整合到一个统一的架构中,从而实现实时性能。
2025-10-08 23:16:48
693
原创 论文阅读:Enhanced Deep Residual Networks for Single Image Super-Resolution
通过为预处理模块采用更大的内核,我们可以在网络的早期阶段覆盖更大的感受野时保持特定于尺度的部分浅。移除批量归一化层,由于批量归一化层对特征进行了归一化处理,它们通过对特征进行归一化处理来摆脱网络的范围灵活性,因此更好地将其移除,更好的节省了内存空间。2.在PSNR和SSIM方面,与其他损失函数相比,使用L2损失训练并不能保证更好的性能,而L1训练的网络比使用L2训练的网络取得了更好的性能;2.改进了SRResNet和原始的ResNet网络,去除了不必要的模块,得出来了适合的网络;
2025-10-08 18:20:06
143
原创 IDM插件开发挑战赛:创新下载技术的竞技场
插件生态对IDM未来发展的影响鼓励开发者长期参与生态建设的倡议相关技术趋势(如Web3、边缘计算)的潜在结合点(注:实际撰写时可依据具体技术细节或赛事规则调整章节深度。
2025-10-08 17:16:40
256
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅