【算法设计与分析】笔记(1)递归法

文章介绍了递归的基本概念,包括边界条件和递归方程的重要性。接着通过两个经典例题——Fibonacci数列和全排列问题,展示了递归在解决实际问题中的应用。文中提供了C语言实现的递归函数,分别用于计算Fibonacci数列的第20项和全排列问题,并解释了代码逻辑和运行过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

一、递归的概念

  1. 直接或间接地调用自身的算法 称为递归算法
  2. 用函数自身给出定义的函数 称为递归函数
    3.边界条件递归方程是递归函数的两个要素,递归函数只有具备了这两个要素,才能在有限次计算后得到结果。

二、经典例题

1.Fibonacci数列

无穷数列1,1,2,3,5,8,13,21,34,55,···称为Fibonacci数列
递归表达式:
f ( x ) = { 1 ,    x = 1 1 ,    x = 2 f ( x − 1 ) + f ( x − 2 ) ,    x > 2 f(x)= \begin{cases} 1,\,\,x=1\\ 1,\,\,x=2\\ f(x-1)+f(x-2),\,\,x>2\\ \end{cases} f(x)= 1,x=11,x=2f(x1)+f(x2),x>2
以输出斐波拉契数列第二十项为例
C语言代码

#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<math.h>
//斐波拉契数列(第20个是)
int f(int x)
{
	if (x == 1)
		return 1;
	else if (x == 2)
		return 1;
	else if(x>2)
	{
		return f(x - 1) + f(x - 2);
	}
}
int main()
{
	int a = 0;
	a = f(20);
	printf("斐波拉契数列第20个是%d。",a);
	return 0;
}

代码运行结果
在这里插入图片描述

2、全排列问题

定义:从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排列起来,叫做从n个不同元素中取出m个元素的一个排列。当m=n时所有的排列情况叫全排列。
公式:全排列数f(n)=n!(定义0!=1)
举例:以{a,b,c,d}的全排列为例,解析算法的运行过程
全排列图解
在这里插入图片描述
问题分析
首先考虑第1个位置,共有n个位置,任取一个元素放在第一个位置,有n个放置方法;
其次考虑第2个位置,此时剩余n-1个元素,任取一个元素放在第2个位置,有n-1种放置方法

考虑第n个位置时只剩1个元素,只有1种放置方法
设计思想
①首先考虑第1个位置
②考虑第2个位置

k、考虑第k个位置,此时,前k-1个位置已经排列好了,只需考虑如何将没有排列的元素放在第k个及其后面的位置。

n、最后考虑第n个位置,此时,只有一个元素,已构成一个排列,直接输出结果。
注意保证每个元素放置一次
做法:进行元素互换,第一次交换swap(list[k],list[i]),递归考虑第k+1个位置时调用perm(list[k:n]-list[k]),然后再次元素互换,将list[k:m]中的元素恢复到初始顺序swap(list[k],list[i])

C语言代码

#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
int list[1000];//用于存储全排列的数据

//交换函数
void swap(int x, int y) {
	int t;
	t = list[x];
	list[x] = list[y];
	list[y] = t;
}

void perm(int p, int q) {
	if (p == q) {
		int j;
		for (j = 1; j <= q; j++) {
			printf("%5d", list[j]);
		}
		printf("\n");
	}
	else {
		int i;
		for (i = p; i <= q; i++) {
			swap(p, i);
			perm(p + 1, q);
			swap(p, i);
		}
	}
}

int main() {
	int n;
	printf("请输入想要全排列到第几个数:");
	scanf("%d", &n);
	int i;
	for (i = 1; i <= n; i++) {
		list[i] = i;
	}
	perm(1, n);//将数1到n进行全排列
	return 0;
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值