前言
一、递归的概念
- 直接或间接地调用自身的算法 称为递归算法
- 用函数自身给出定义的函数 称为递归函数
3.边界条件与递归方程是递归函数的两个要素,递归函数只有具备了这两个要素,才能在有限次计算后得到结果。
二、经典例题
1.Fibonacci数列
无穷数列1,1,2,3,5,8,13,21,34,55,···称为Fibonacci数列
递归表达式:
f
(
x
)
=
{
1
,
x
=
1
1
,
x
=
2
f
(
x
−
1
)
+
f
(
x
−
2
)
,
x
>
2
f(x)= \begin{cases} 1,\,\,x=1\\ 1,\,\,x=2\\ f(x-1)+f(x-2),\,\,x>2\\ \end{cases}
f(x)=⎩
⎨
⎧1,x=11,x=2f(x−1)+f(x−2),x>2
以输出斐波拉契数列第二十项为例
C语言代码:
#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<math.h>
//斐波拉契数列(第20个是)
int f(int x)
{
if (x == 1)
return 1;
else if (x == 2)
return 1;
else if(x>2)
{
return f(x - 1) + f(x - 2);
}
}
int main()
{
int a = 0;
a = f(20);
printf("斐波拉契数列第20个是%d。",a);
return 0;
}
代码运行结果:
2、全排列问题
定义:从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排列起来,叫做从n个不同元素中取出m个元素的一个排列。当m=n时所有的排列情况叫全排列。
公式:全排列数f(n)=n!(定义0!=1)
举例:以{a,b,c,d}的全排列为例,解析算法的运行过程
全排列图解:
问题分析:
首先考虑第1个位置,共有n个位置,任取一个元素放在第一个位置,有n个放置方法;
其次考虑第2个位置,此时剩余n-1个元素,任取一个元素放在第2个位置,有n-1种放置方法
…
考虑第n个位置时只剩1个元素,只有1种放置方法
设计思想:
①首先考虑第1个位置
②考虑第2个位置
…
k、考虑第k个位置,此时,前k-1个位置已经排列好了,只需考虑如何将没有排列的元素放在第k个及其后面的位置。
…
n、最后考虑第n个位置,此时,只有一个元素,已构成一个排列,直接输出结果。
注意:保证每个元素放置一次
做法:进行元素互换,第一次交换swap(list[k],list[i]),递归考虑第k+1个位置时调用perm(list[k:n]-list[k]),然后再次元素互换,将list[k:m]中的元素恢复到初始顺序swap(list[k],list[i])
C语言代码:
#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
int list[1000];//用于存储全排列的数据
//交换函数
void swap(int x, int y) {
int t;
t = list[x];
list[x] = list[y];
list[y] = t;
}
void perm(int p, int q) {
if (p == q) {
int j;
for (j = 1; j <= q; j++) {
printf("%5d", list[j]);
}
printf("\n");
}
else {
int i;
for (i = p; i <= q; i++) {
swap(p, i);
perm(p + 1, q);
swap(p, i);
}
}
}
int main() {
int n;
printf("请输入想要全排列到第几个数:");
scanf("%d", &n);
int i;
for (i = 1; i <= n; i++) {
list[i] = i;
}
perm(1, n);//将数1到n进行全排列
return 0;
}