目录
1.导入所需的pandas库pyecharts库还有相关的包
前言
通过使用python语言,我们可以很容易地制作出我们需要的图像。图像生成可以直接而清晰地让我们了解数据,我们称之为信息可视化。现在让我们来讲解一下雷达图。本人新手小白,如果有什么问题请多多包涵
一、雷达图介绍
雷达图通常用于综合分析多个指标,具有完整,清晰和直观的优点因此使用NBA球员数据进行分析。雷达图在显示各维度数据的对比情况的同时,还可以对全部维度的整体情况有一个直观的展示。
雷达图的缺点
1.如果雷达图像上的多边形过多,会降低可读性,使整体图形过于混乱。特别是在有颜色填充的多边形的情况下,上层会遮挡并覆盖下层的多边形
2.如果变量太多,也会导致可读性下降,因为一个变量对应一个坐标轴,这会使坐标轴过于密集,使图表感觉复杂。因此,最好的做法是尽可能控制变量的数量,以保持雷达图的简单明了
二、时间轴介绍
它是将一个或多个事件按时间顺序连接起来,形成一个相对完整的记录系统,然后以图文的形式呈现给用户;时间线可以应用于不同的领域,其最大的功能是将过去的事件系统化、整合和提炼。
三、代码实现过程
安装pyecharts
先启动anaconda或windows系统的命令提示符,然后在命令行中执行在线下载安装pyecharts库的命令,示例如下所示:pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyecharts
1.导入所需的pandas库pyecharts库还有相关的包
import pandas as pd
import pyecharts.options as opts
from pyecharts.charts import Radar
from pyecharts.charts import Timeline
2.导入NBA球员数据
data = pd.read_excel(r'NBA中国官方网站 _ 球员数据.xlsx')
df = pd.read_excel(r'NBA中国官方网站 _ 球员数据2.xlsx')
3.数据处理
用query函数进行数据筛选再用values.tolist()方法进行数据的转换
data1 = data.query(f'赛季=={year}')[['场均得分','场均篮板','场均助攻','场均抢断','场均盖帽']].values.tolist()
data2 = df.query(f'赛季=={year}')[['场均得分','场均篮板','场均助攻','场均抢断','场均盖帽']].values.tolist()