数据可视化之NBA球员雷达图

目录

前言

一、雷达图介绍

二、时间轴介绍

三、代码实现过程

安装pyecharts

1.导入所需的pandas库pyecharts库还有相关的包

2.导入NBA球员数据

3.数据处理

4.每个方向的小标题文字的格式配置

5.添加两个需要比较的数据

6.配置数据标签

7.设置大标题,设置图例

8.创建时间轴组件

效果图

附完整代码

总结


前言

通过使用python语言,我们可以很容易地制作出我们需要的图像。图像生成可以直接而清晰地让我们了解数据,我们称之为信息可视化。现在让我们来讲解一下雷达图。本人新手小白,如果有什么问题请多多包涵

雷达图介绍

雷达图通常用于综合分析多个指标,具有完整,清晰和直观的优点因此使用NBA球员数据进行分析。雷达图在显示各维度数据的对比情况的同时,还可以对全部维度的整体情况有一个直观的展示。

雷达图的缺点

1.如果雷达图像上的多边形过多,会降低可读性,使整体图形过于混乱。特别是在有颜色填充的多边形的情况下,上层会遮挡并覆盖下层的多边形

2.如果变量太多,也会导致可读性下降,因为一个变量对应一个坐标轴,这会使坐标轴过于密集,使图表感觉复杂。因此,最好的做法是尽可能控制变量的数量,以保持雷达图的简单明了

二、时间轴介绍

它是将一个或多个事件按时间顺序连接起来,形成一个相对完整的记录系统,然后以图文的形式呈现给用户;时间线可以应用于不同的领域,其最大的功能是将过去的事件系统化、整合和提炼。

三、代码实现过程

安装pyecharts

先启动anaconda或windows系统的命令提示符,然后在命令行中执行在线下载安装pyecharts库的命令,示例如下所示:pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyecharts

1.导入所需的pandas库pyecharts库还有相关的包

import pandas as pd
import pyecharts.options as opts
from pyecharts.charts import Radar
from pyecharts.charts import Timeline

2.导入NBA球员数据

data = pd.read_excel(r'NBA中国官方网站 _ 球员数据.xlsx')
df = pd.read_excel(r'NBA中国官方网站 _ 球员数据2.xlsx')

3.数据处理

用query函数进行数据筛选再用values.tolist()方法进行数据的转换

data1 = data.query(f'赛季=={year}')[['场均得分','场均篮板','场均助攻','场均抢断','场均盖帽']].values.tolist()
data2 = df.query(f'赛季=={year}')[['场均得分','场均篮板','场均助攻','场均抢断','场均盖帽']].values.tolist()
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值