自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 已知相机位姿情况下的colmap稀疏或稠密重建

本文介绍了在已知相机位姿情况下使用COLMAP进行稀疏和稠密三维重建的完整流程。首先需要准备包含相机内外参的txt文件、图像文件和数据库文件。然后通过特征提取、匹配和三角化完成稀疏重建,生成3D点云。最后基于稀疏重建结果,经过图像去畸变、深度图估计和融合等步骤实现稠密重建。整个过程既可通过GUI界面操作,也可在无头服务器上使用命令行完成。文章详细说明了各步骤所需的命令参数和注意事项,为利用已知相机位姿进行三维重建提供了实用指南。

2025-11-29 00:03:57 1003

原创 50系显卡的3DGS基础环境配置编译diff-gaussian-rasterization和simple-knn

摘要: 在50系显卡环境下配置3DGS深度学习项目时,由于CUDA 12.x与旧版代码ABI不兼容,导致编译diff-gaussian-rasterization和simple-knn扩展包失败。主要报错包括:1) 使用旧版setup.py机制构建的兼容性警告;2) 缺少g++版本定义;3) CUDA编译时出现未引用变量警告。这些问题反映出新版CUDA与旧项目代码的适配性问题,需通过更新编译方法或调整项目代码来解决。

2025-11-14 16:14:47 196

原创 ubuntu24.04 + NVIDIA RTX 5090 安装pytorch和pytorch3d

本文介绍了在Ubuntu 24.04系统搭配NVIDIA RTX 5090显卡环境下安装PyTorch和PyTorch3D的方法。首先通过指定版本号(2.7.1)和CUDA版本(cu128)的pip命令安装PyTorch,并提供手动下载.whl文件的备选方案。验证安装成功后,文章详细说明了如何从特定网站下载与当前环境匹配的PyTorch3D预编译.whl文件进行安装。最后提供了验证两个库安装成功的测试命令。整个过程特别强调了版本兼容性的重要性,针对RTX 5090显卡需要安装较新版本PyTorch的情况给出

2025-11-14 15:03:48 370

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除