- 博客(41)
- 收藏
- 关注
原创 使用numpy自定义数据集,使用scikit-learn中SVM的包实现SVM分类
我们使用numpy生成一个简单的二维数据集,其中包含两个类别。# 自定义数据集X = np.array([[1, 2], [2, 3], [3, 3], [6, 6], [7, 7], [8, 8]]) # 特征y = np.array([0, 0, 0, 1, 1, 1]) # 标签。
2025-02-03 00:37:37
152
原创 自定义数据集,使用scikit-learn 中K均值包 进行聚类
通过K均值聚类,我们成功地将数据集分为两个簇,并通过可视化方式直观展示了聚类结果。K均值算法的核心思想是通过计算点与簇中心的距离进行分组,并不断迭代优化簇的中心位置。
2025-02-03 00:21:46
519
原创 这篇博客可以按以下结构来写,简洁明了地介绍如何使用numpy自定义数据集,并利用朴素贝叶斯算法进行分类。
在本博客中,我们使用numpy自定义了一个简单的二维数据集,并使用朴素贝叶斯算法进行了分类。尽管数据集非常简单,朴素贝叶斯依然能提供有效的分类结果。在实际应用中,朴素贝叶斯分类器常用于文本分类和垃圾邮件识别等任务。
2025-02-03 00:17:35
235
原创 使用 Numpy 自定义数据集,使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数
使用 Numpy 创建一个简单的线性可分数据集,并将其转换为 Pytorch 张量。# 创建数据集X = np.random.rand(100, 2) # 100 个样本,2 个特征y = (X[:, 0] + X[:, 1] > 1).astype(int) # 标签,若特征之和大于1则为 1,否则为 0# 转换为 PyTorch 张量在 Pytorch 中定义一个简单的逻辑回归模型。self.linear = nn.Linear(input_dim, 2) # 二分类问题。
2025-02-03 00:10:27
490
原创 自定义数据集 使用paddlepaddle框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测
通过以上步骤,我们成功地使用PaddlePaddle框架实现了一个简单的逻辑回归模型,并且在训练后保存了模型,加载并对新数据进行了预测。这种方式可以为更复杂的任务奠定基础。
2025-02-03 00:03:25
593
原创 使用numpy自定义数据集 使用tensorflow框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预
首先,我们使用numpy生成一个简单的二分类数据集,包含两个特征和对应的标签。标签0表示负类,标签1表示正类。# 设置随机种子,保证每次运行结果一致# 生成自定义数据集X = np.random.rand(100, 2) # 100个样本,2个特征y = (X[:, 0] + X[:, 1] > 1).astype(int) # 标签:如果两个特征之和大于1,标签为1,否则为0这样我们就得到了一个简单的二分类数据集,X是特征矩阵,y是标签。在本篇博客中,我们学习了如何使用numpy。
2025-01-28 20:37:55
992
原创 自定义数据集,使用 PyTorch 框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测
首先,我们使用 NumPy 创建一个简单的二分类数据集。假设我们的数据集包含两个特征。# 生成随机数据X = np.random.randn(100, 2) # 100个样本,2个特征y = (X[:, 0] + X[:, 1] > 0).astype(int) # 标签为1或0# 打印数据集的前5个样本在这篇博客中,我们展示了如何使用 NumPy 创建一个简单的自定义数据集,并使用 PyTorch 实现一个逻辑回归模型。我们还展示了如何保存训练好的模型,并加载模型进行预测。
2025-01-28 20:28:30
1150
原创 使用框架进行线性回归拟合自定义数据集
首先,我们需要生成一个自定义数据集。这里我们用numpy生成一些简单的线性关系数据。# 生成自定义数据集X = 2 * np.random.rand(100, 1) # 100个随机样本y = 4 + 3 * X + np.random.randn(100, 1) # y = 4 + 3X + 噪声。
2025-01-26 00:06:53
371
原创 使用scikit-learn中的KNN包实现对鸢尾花数据集的预测
KNN算法的核心思想是:对于一个未知类别的样本,通过计算该样本与已知样本的距离,选择距离最近的K个样本进行投票,最终将该样本分类为票数最多的类别。KNN算法是一种简单且有效的分类方法,尤其适用于小型数据集。在鸢尾花数据集上,KNN算法能够准确地对样本进行分类,并且选择合适的K值能够显著提升模型性能。
2025-01-23 19:24:39
533
原创 考后复习~
(1)使用 OpenCV 加载一张图像。(2)在 PyQt 的窗口中显示这张图像。(3)提供四个按钮(QPushButton):- 一个用于将图像转换为灰度图- 一个用于将图像恢复为原始彩色图- 一个用于将图像进行翻转- 一个用于将图像进行旋转(4)当用户点击按钮时,相应地更新窗口中显示的图像。
2024-12-28 11:08:41
1126
原创 opencv-python的简单练习
计算这些轮廓的长宽比,长宽比ratio在2到5.5之间的,在原图上用矩形框标出,这些轮廓可能是车牌的候选区域。将图像从BGR颜色空间转换为HSV颜色空间,并提取出特定的颜色范围(例如,提取黄色区域)。使用Canny边缘检测算法检测图像边缘,阈值1为50,阈值2为150。接着,对二值化后的图像执行腐蚀和膨胀操作,并显示处理前后的图像。对缩放后的图像应用仿射变换,实现图像的旋转(例如,旋转45度)。在检测到的边缘图像上绘制轮廓,轮廓颜色为红色,厚度为2。显示处理后的图像,并在图像上标记出识别到的颜色区域。
2024-12-15 22:04:43
755
原创 OpenCV图像处理实战:从边缘检测到透视变换,掌握七大核心函数
在本文中,我们探讨了多个图像处理技术,包括 Sobel 算子、Laplacian 算子、Canny 边缘检测、轮廓提取与绘制、以及透视变换等。
2024-12-13 20:41:38
1609
原创 “Python-OpenCV初体验:简单实现颜色识别与轮廓绘制”
在本文中,我们探索了如何通过颜色识别和轮廓绘制来处理图像。通过将图像转换为HSV颜色空间,并设定特定的颜色范围,我们成功地提取了目标颜色区域。此外,我们使用形态学变换和滤波技术,进一步优化了图像处理效果,最终通过轮廓检测技术准确地绘制了目标区域的轮廓。
2024-12-12 21:17:29
761
原创 用OpenCV给图像加水印,为图像添加个性
通过本篇博客,我们一起探索了如何使用OpenCV为图片添加水印或Logo。虽然最后我给奥特曼的图片加了个水印,但这只是一个小小的示例。掌握了这个技巧,你可以将它应用到任何图片上,为你的作品增添个性与保护。希望你们在实践中收获更多,动手试试吧!
2024-12-12 20:19:21
1213
原创 图像矫正小白指南:从理论到实践的简单实现
无论是扭曲的油画,还是变形的文档,透视变换都能为它们带来新生。通过 Python 和 OpenCV,我们不仅能纠正图像的‘歪斜’,还可以让它们重新回到正轨。下一次,遇到图像走偏的情况,记得给它们一点‘透视’的帮助,恢复原本的美感!
2024-12-12 19:42:21
1145
原创 OpenCV核心操作详解:从二值化到透视变换,一文搞定图像处理必备技能!
本篇博客将深入探讨 OpenCV 中常用的几种操作,包括二值化、自适应二值化、腐蚀、膨胀,以及仿射变换与透视变换。通过这些功能,我们可以实现从简单的图像分割到复杂的几何变换的各种任务。
2024-12-11 21:36:28
1882
原创 Python多线程爬虫入门:让你的爬虫跑得更快
今天我们通过一个简单的例子,学习了如何用 Python 编写一个多线程网页爬虫。希望你能通过这篇文章,快速入门多线程编程,让自己的爬虫项目跑得更快!如果你有任何问题或疑问,欢迎在评论区留言,我们一起讨论,互相进步!
2024-11-18 19:07:38
1172
原创 Python模块与包:让你的代码不再“乱成一锅粥”
模块是一个包含Python代码的文件,通常用于组织和重用代码。模块可以包含函数、类、变量,也可以包含可执行的代码。你可以创建自己的模块。只需将Python代码保存为一个.py文件,然后在其他Python文件中导入即可。例如,假设你有一个A.py# A.pyprint("我是A.py的函数1")print("我是A,py的函数2")# 判断是当前模块下a_fun()# B.pya_fun()b_fun()包是一种组织模块的方式,通常用于将多个相关的模块进行分组。
2024-11-15 20:13:30
412
原创 Python文件操作秘籍:从打开到关闭,一网打尽!
你是否也曾在文件处理中迷失方向?别担心,今天我将带你领略Python文件操作的基本技能,从打开文件到读取、写入、关闭文件,全部都有妙招!
2024-11-14 20:57:47
904
原创 Python异常处理:当程序崩溃不再是终点,而是新起点!
编程世界就像一场冒险,哪里有宝藏,哪里就有陷阱。而这些陷阱,就是我们常见的错误。当你的代码抛出异常时,程序的命运并非定于一“死”——通过Python的异常处理机制,错误可以转化为一种机会,让你的程序不至于崩溃,而是像勇士一样英勇地面对挑战!今天,我们就来聊聊Python的异常处理,帮你轻松应对各种程序中的“阴沟”。
2024-11-14 19:37:45
723
原创 带你理解Python面向对象
面向对象编程是现代编程的核心思想之一,无论是小型项目还是大型系统,理解并应用 OOP 都是开发者的必备技能。希望本文能够帮助你加深对 OOP 的理解,提升你的编程水平。
2024-11-13 21:56:04
1085
原创 试卷题目解析
编写一个python程序,解决以下问题:现在有三个数,分别为a,b,c,他们之间的和为19,取值范围1-9(包括9),但是a,b,c之间不相等,求出能组成多少个互不相同并且不重复的数字。编写一个python函数,可接收一个列表和要查找的值key,使用顺序查找法,输出key在列表中的下标,找不到的话,输出-1,要求:不可以在定义函数内调用python内置函数。编写一个python函数,接受一个字符串作为参数,判断一个字符串是不是回文字符串,返回值是一个布尔类型。编写一个递归函数,返回第n项斐波那契数列的值。
2024-11-13 09:23:57
179
原创 一张图带你通关python基础
在编程的世界里,Python以其简洁易懂的语法成为了初学者入门的最佳选择之一。然而,即使是这样一门友好的语言,对于新手来说也可能显得复杂难懂。今天,我们将通过一张精心设计的信息图表,帮助你快速掌握Python的基础知识,轻松上手编程之旅。
2024-11-07 21:22:05
242
原创 python小练习——字符串
1、长度为三且各字符不同的子字符串,我们称这个字符串为好字符串, 给你一个字符串s,请你返回s中长度为3的好子字符串的数量, 注意:如果相同的好子字符串出现多次,每一次都应该被记录答案之中, 子字符串是一个字符串中连续的字符序列。3、从键盘输入一个字符串,判断这个字符串是不是回文字符串【使用下标】 回文字符串:满足对称性,第一个字符和倒数第一个字符相等, 第二个和倒数第二个字符相等……5、从键盘输入一串字符串,先将所有大写转换成小写, 再移除其中的非数字字母字符之后,判断是不是回文字符串。
2024-11-06 20:40:12
752
原创 python小练习——循环语句for
7、已知一串5位数的密码,满足a开头,取值范围是1-9,其他4位由b c d e代替 取值范围是0-9。6、百钱买百鸡是一个很经典的问题,请使用穷举法求出,用一百块钱买一百只鸡, 共有哪几种买法(公鸡5块钱一只,母鸡3块钱一只,小鸡1块钱三只)for是python中的另一个循环语句,提供了更为强大的循环结构,它可以遍历任何序列,例如:字符串、列表、元组、字典、集合等。完数是指一个数恰好等于它的真因子值之和, 例如:6是完数,因为 6=1+2+3。1、输入任意两个数,输出两数之间(包括这两个数)偶数之和。
2024-11-05 21:44:29
927
原创 python小练习——循环语句while
在编程世界中,循环结构是实现代码重复执行的关键工具之一。Python 提供了多种循环结构,其中 while 循环是一种基于条件判断来决定是否重复执行某段代码块的方式。在python中,循环语句的实现关键字是while 和 for。循环是 Python 中一个强大且灵活的工具,适用于多种编程场景。5)从键盘输入起始值为a,终止值为b,必须保证a,计算a到b之间能被3整除。4)从键盘输入起始值为a,终止值为b,计算a到b之间能被3整除的偶数之和。1)输出0到100之间所有能被3或5整除的数。
2024-11-05 21:12:30
619
原创 python小练习——条件语句if
if 语句是 Python 中进行条件判断的基础工具,通过它可以轻松实现逻辑选择和流程控制。掌握好 if 语句的使用方法,对编写高效、灵活的程序至关重要。今天我们通过七个简单的题目来熟悉一下 Python 中的 if 条件语句。
2024-11-05 19:15:41
2118
原创 【零基础】和我一起快速入门Python(图文并茂)持续更新中…
欢迎来到【零基础】和我一起快速入门Python!如果你是编程新手,不用担心,这里就是你开始的地方。Python 是一种强大又易于学习的编程语言,非常适合初学者。本教程将带你从安装Python环境开始,一步步学习基本语法,再到编写简单的程序。通过图文并茂的方式,让学习过程既轻松又有趣。让我们一起开启Python编程之旅吧!
2024-11-02 17:29:58
858
1
原创 喂饭级教程,不罗嗦的python安装教程(超详细)
随着编程语言的日益普及,Python 成为了许多初学者入门编程的首选。本文旨在为编程新手提供一份详尽且易于理解的指南,介绍如何从官方渠道安全下载 Python,并完成本地环境的安装。
2024-11-02 10:42:09
487
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人