The equation

# include <bits/stdc++.h>
# define int long long
using namespace std;
int exgcd(int a,int b,int &x,int &y)
{
	    if(b==0)
	    {
	    	  x=1,y=0;
	    	  return a;
		}
		int g=exgcd(b,a%b,y,x);
		y-=a/b*x;
		return g;
}
signed main()
{
	  int a,b,c,x1,y1,x2,y2;
	  cin>>a>>b>>c>>x1>>x2>>y1>>y2;
	  c=-c;
	  if(c<0)
	  {
	  	   a=-a;
	  	   b=-b;
	  	   c=-c;
	  }
	  if(a<0)
	  {
	  	  a=-a;
	  	  swap(x1,x2);
	  	  x1=-x1;
	  	  x2=-x2;
	  }
	  if(b<0)
	  {
	  	  b=-b;
	  	  swap(y1,y2);
	  	  y1=-y1;
	  	  y2=-y2;
	  }
	  int ans=0;
	  if(a==0&&b==0)
	  {
	  	    if(c==0)
	  	    {
	  	    	ans=(y2-y1+1)*(x2-x1+1);  
			  }
			  else
			  {
			  	  ans=0;
			  }
	   } 
	   else if(a==0)
	   {
	   	        if(c%b==0&&y1<=c/b&&c/b<=y2)
	   	        {
	   	        	   ans=x2-x1+1;
				   }
				   else
				   {
				   	   ans=0;
				   }
	   }
	   else if(b==0)
	   {
	   	     if(c%a==0&&x1<=c/a&&c/a<=x2)
	   	     {
	   	     	     ans=y2-y1+1;
				}
				else
				{
					   ans=0;
				}
	   }
	   else
	   {
	   	    int x,y,x0,y0;
	   	    int g=exgcd(a,b,x0,y0);
	   	    if(c%g!=0)
	   	    {
	   	    	  ans=0;
			   }
			   else
			   { 
			        int x3=b/g;
			        int y3=a/g;
			        x0=x0*c/g;
			        y0=y0*c/g;
			   
			       int k=min(floor(1.0*(x2-x0)/x3),floor(1.0*(y0-y1)/y3));
			   	     int k1=max(ceil(1.0*(x1-x0)/x3),ceil(1.0*(y0-y2)/y3));
			   	     if(k>=k1)
			   	     {
			   	     	  ans=k-k1+1;
						}
						else
						{
							 ans=0;
						}
			   }
	   }
	   cout<<ans<<endl;
	   
 } 

 思路:扩展欧几里得

欧几里得:
用来求a,b的最大公约数而且还能求ax+by=gcd(a,b)的一组解。

ax1+by1=gcd(a,b),bx2+(a mod b)y2=gcd(b,a mod b)

因为由欧几里得算法可知,gcd(a,b)=gcd(b,a mod b)

ax1+by1=bx2+(a mod b)y2;(1)

a mod b=a-a/b*b;(2)

将(1)(2)联立可以得到

x1=y2

y1=x2-(a/b)*y2

2:用来求解ax+by=c;

如果c不是gcd(a,b)的倍数无解

然后方程俩边同时除以gcd(a,b)

g=gcd(a,b)
a1=a/g;b1=b/g;c1=c/g;

接下来只用求a1*x+b1*y=c1的解;

然后a1和b1互质;即:gcd(a1,b1)=1;

求a1*x+b1*y=1;的解;

利用欧几里得求出其中一组解x,y;

则a1*x+b1*y=c1的解为x0,y0;

x0=x*c1;

y0=y*c1;

这也是ax+by=c的解;

ax0+by0=c;

a(x0+k*b)+b(y0-k*a)=c;

得到通解:

x=x0+k*b

y=y0-k*a  (k∈Z)

除此以外本题需要进行注意a,b是否为0的问题,并且注意a,b,c;

的大小问题;详情请见代码

注意还有解的取值问题;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值