代码随想录day13 ||239. 滑动窗口最大值 347.前 K 个高频元素

239.滑动窗口最大值
347. 前 K 个高频元素

239.滑动窗口最大值

解题思路 :

  • 1.暴力解法:遍历数组,在每个窗口遍历找到最大值;

  • 2.对窗口内容排序。使用一个数据结构记录窗口的内容,每次滑动窗口时,删除离开窗口的元素、新增加入窗口的元素,并维护数据结构内元素的顺序。 可使用大顶堆、BST记录窗口内的内容

  • 3.使用单调队列

    因为每次向queue中新增元素的时候,queue中已有元素在数组中的位置肯定比当前元素更靠前。所以,如果queue中已有的一些元素,它们的值小于新增的元素,则它们肯定不会成为当前窗口(及后续窗口)中的最大值。所以我们就可以把这些元素pop掉了。

    每个新增的元素都是经过如上判断及操作的话,那么这个queue就是一个单调递减的queue了。留在queue中的元素是:1.当前窗口中的最大值;2.后续窗口中可能的最大值。
    删除
    当窗口滑过了元素的时候,就应该删除该元素。
    经过前面的分析,我们知道如果滑出窗口的元素不是queue的max value的话,那说明窗口中该元素之后肯定有更大的元素成为了max value。那么这种情况下,“滑出窗口的元素”肯定已经在这个max value的元素加入到queue的时候已经被pop了。
    所以我们只需要判断max value是否等于“滑出窗口的元素”,如果等于则pop front。
    在这里插入图片描述

class Solution {
private:
    class MyQueue { //单调队列(从大到小)
    public:
        deque<int> que; // 使用deque来实现单调队列
        // 每次弹出的时候,比较当前要弹出的数值是否等于队列出口元素的数值,如果相等则弹出。
        // 同时pop之前判断队列当前是否为空。
        void pop(int value) {
            if (!que.empty() && value == que.front()) {
                que.pop_front();
            }
        }
        // 如果push的数值大于入口元素的数值,那么就将队列后端的数值弹出,直到push的数值小于等于队列入口元素的数值为止。
        // 这样就保持了队列里的数值是单调从大到小的了。
        void push(int value) {
            while (!que.empty() && value > que.back()) {
                que.pop_back();
            }
            que.push_back(value);

        }
        // 查询当前队列里的最大值 直接返回队列前端也就是front就可以了。
        int front() {
            return que.front();
        }
    };
public:
    vector<int> maxSlidingWindow(vector<int>& nums, int k) {
        MyQueue que;
        vector<int> result;
        for (int i = 0; i < k; i++) { // 先将前k的元素放进队列
            que.push(nums[i]);
        }
        result.push_back(que.front()); // result 记录前k的元素的最大值
        for (int i = k; i < nums.size(); i++) {
            que.pop(nums[i - k]); // 滑动窗口移除最前面元素
            que.push(nums[i]); // 滑动窗口前加入最后面的元素
            result.push_back(que.front()); // 记录对应的最大值
        }
        return result;
    }
};

347. 前 K 个高频元素

解题思路:

先用哈希表记录所有的值出现的次数
然后将按照出现的次数进行从高到低排序
最后取前 k 个就是答案了
class Solution {
    public int[] topKFrequent(int[] nums, int k) {
        HashMap<Integer, Integer> hashtable = new HashMap<>();

        // 统计每个次数出现的次数
        for (int num : nums) {
            hashtable.put(num, hashtable.getOrDefault(num, 0) + 1);
        }

        // 排序
        List<Map.Entry<Integer, Integer>> list = new ArrayList<>(hashtable.entrySet());
        list.sort(new Comparator<Map.Entry<Integer, Integer>>() {
            @Override
            public int compare(Map.Entry<Integer, Integer> o1, Map.Entry<Integer, Integer> o2) {
                return o2.getValue().compareTo(o1.getValue());
            }
        });

        // 获取前k高的结果
        int[] res = new int[k];
        for (int i = 0; i < k; i++) {
            res[i] = list.get(i).getKey();
        }

        return res;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值