239.滑动窗口最大值
解题思路 :
-
1.暴力解法:遍历数组,在每个窗口遍历找到最大值;
-
2.对窗口内容排序。使用一个数据结构记录窗口的内容,每次滑动窗口时,删除离开窗口的元素、新增加入窗口的元素,并维护数据结构内元素的顺序。 可使用大顶堆、BST记录窗口内的内容
-
3.使用单调队列
因为每次向queue中新增元素的时候,queue中已有元素在数组中的位置肯定比当前元素更靠前。所以,如果queue中已有的一些元素,它们的值小于新增的元素,则它们肯定不会成为当前窗口(及后续窗口)中的最大值。所以我们就可以把这些元素pop掉了。
每个新增的元素都是经过如上判断及操作的话,那么这个queue就是一个单调递减的queue了。留在queue中的元素是:1.当前窗口中的最大值;2.后续窗口中可能的最大值。
删除
当窗口滑过了元素的时候,就应该删除该元素。
经过前面的分析,我们知道如果滑出窗口的元素不是queue的max value的话,那说明窗口中该元素之后肯定有更大的元素成为了max value。那么这种情况下,“滑出窗口的元素”肯定已经在这个max value的元素加入到queue的时候已经被pop了。
所以我们只需要判断max value是否等于“滑出窗口的元素”,如果等于则pop front。
class Solution {
private:
class MyQueue { //单调队列(从大到小)
public:
deque<int> que; // 使用deque来实现单调队列
// 每次弹出的时候,比较当前要弹出的数值是否等于队列出口元素的数值,如果相等则弹出。
// 同时pop之前判断队列当前是否为空。
void pop(int value) {
if (!que.empty() && value == que.front()) {
que.pop_front();
}
}
// 如果push的数值大于入口元素的数值,那么就将队列后端的数值弹出,直到push的数值小于等于队列入口元素的数值为止。
// 这样就保持了队列里的数值是单调从大到小的了。
void push(int value) {
while (!que.empty() && value > que.back()) {
que.pop_back();
}
que.push_back(value);
}
// 查询当前队列里的最大值 直接返回队列前端也就是front就可以了。
int front() {
return que.front();
}
};
public:
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
MyQueue que;
vector<int> result;
for (int i = 0; i < k; i++) { // 先将前k的元素放进队列
que.push(nums[i]);
}
result.push_back(que.front()); // result 记录前k的元素的最大值
for (int i = k; i < nums.size(); i++) {
que.pop(nums[i - k]); // 滑动窗口移除最前面元素
que.push(nums[i]); // 滑动窗口前加入最后面的元素
result.push_back(que.front()); // 记录对应的最大值
}
return result;
}
};
347. 前 K 个高频元素
解题思路:
先用哈希表记录所有的值出现的次数
然后将按照出现的次数进行从高到低排序
最后取前 k 个就是答案了
class Solution {
public int[] topKFrequent(int[] nums, int k) {
HashMap<Integer, Integer> hashtable = new HashMap<>();
// 统计每个次数出现的次数
for (int num : nums) {
hashtable.put(num, hashtable.getOrDefault(num, 0) + 1);
}
// 排序
List<Map.Entry<Integer, Integer>> list = new ArrayList<>(hashtable.entrySet());
list.sort(new Comparator<Map.Entry<Integer, Integer>>() {
@Override
public int compare(Map.Entry<Integer, Integer> o1, Map.Entry<Integer, Integer> o2) {
return o2.getValue().compareTo(o1.getValue());
}
});
// 获取前k高的结果
int[] res = new int[k];
for (int i = 0; i < k; i++) {
res[i] = list.get(i).getKey();
}
return res;
}
}