线性规划问题化为标准型

虑以下最大化问题:

Maximize Z=3x1+5x2Maximize Z=3x1​+5x2​

受以下约束条件限制:

x1+x2≤42x1+x2≥2x1−x2=1x1,x2≥0x1​+x2​2x1​+x2​x1​−x2​x1​,x2​​≤4≥2=1≥0​

化为标准型

1. 目标函数

由于标准型要求最小化,我们将最大化问题转化为最小化问题:

Minimize −Z=−3x1−5x2

2. 约束条件
  • 对于小于等于(≤)的不等式约束,我们引入松弛变量(slack variable),使其成为等式。
  • 对于大于等于(≥)的不等式约束,我们引入剩余变量(surplus variable),然后加上人工变量(artificial variable),以确保初始基本可行解的存在。
  • 等式约束保持不变。

因此,原始约束条件可以这样转换:

其中 s1是松弛变量,s2​ 是剩余变量,a1是人工变量。

3. 变量非负性

所有变量 x1,x2,s1,s2,a1 都需要满足非负性条件:

x1,x2,s1,s2,a1≥0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值