推荐系统相关知识

推荐系统

推荐系统的分类

基于行为数据进行的推荐即为协同过滤推荐

根据数据源分类推荐

基于人口统计学推荐算法(人以群分)

将相同的事物推荐给相似的人

基于内容推荐算法(Content based,CB)(物以类聚)

将相似的事物推荐给相同的人

基于协同过滤的推荐算法(Collaborative Filter,CF)

根据用户和数据的关联进行推荐

CF与CB对比:

优点:

缺点:

CF得到的行为数据是稀疏矩阵,依赖历史数据,需要使用基于统计推荐或提前获取用户标签进行相关推荐

混合推荐

推荐系统实验方法

离线实验

跟业务系统无关,只需拿到历史数据即可开始

用户调查

在线实验

AB测试(用户行为周期漫长)

推荐系统评测指标

推荐准确度评测

准确率、精确率和召回率

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值