推荐系统
推荐系统的分类
![]()
基于行为数据进行的推荐即为协同过滤推荐
根据数据源分类推荐
基于人口统计学推荐算法(人以群分)
将相同的事物推荐给相似的人
![]()
基于内容推荐算法(Content based,CB)(物以类聚)
将相似的事物推荐给相同的人
![]()
基于协同过滤的推荐算法(Collaborative Filter,CF)
根据用户和数据的关联进行推荐
![]()
CF与CB对比:
优点:
![]()
缺点:
CF得到的行为数据是稀疏矩阵,依赖历史数据,需要使用基于统计推荐或提前获取用户标签进行相关推荐
混合推荐
![]()
推荐系统实验方法
离线实验
跟业务系统无关,只需拿到历史数据即可开始
![]()
用户调查
![]()
在线实验
AB测试(用户行为周期漫长)
推荐系统评测指标
![]()
推荐准确度评测
![]()
准确率、精确率和召回率
![]()
![]()