- 博客(1)
- 收藏
- 关注
原创 模型的鲁棒性和泛化性
指的是模型对于输入数据的健壮性,即模型在遇到各种不同的数据输入时,仍然能够保持高效的表现。一个鲁棒性强的模型能够在噪声、缺失数据或者其他异常情况下也能够准确地预测结果。则是指模型对于新数据的适应能力,即模型能否对于未在训练集中出现的数据进行准确的预测。一个具有很强泛化性的模型能够在不同的数据集上都表现出色,而不仅仅是在训练集上表现好。
2025-03-10 12:15:52
404
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人