知识点:
- 数据集的划分
- 机器学习模型建模的三行代码
- 机器学习模型分类问题的评估
预处理流程回顾
1. 导入库
2. 读取数据查看数据信息--理解数据
3. 缺失值处理
4. 异常值处理
5. 离散值处理
6. 删除无用列
7. 划分数据集
8. 特征工程
9. 模型训练
10. 模型评估
11. 模型保存
12. 模型预测
导入需要的包
import pandas as pd
import pandas as pd #用于数据处理和分析,可处理表格数据。
import numpy as np #用于数值计算,提供了高效的数组操作。
import matplotlib.pyplot as plt #用于绘制各种类型的图表
import seaborn as sns #基于matplotlib的高级绘图库,能绘制更美观的统计图形。
# 设置中文字体(解决中文显示问题)
plt.rcParams['font.sans-serif'] = ['SimHei'] # Windows系统常用黑体字体
plt.rcParams['axes.unicode_minus'] = False # 正常显示负号
查看数据信息
data = pd.read_csv('data.csv') #读取数据
print("数据基本信息:")
data.info()
print("\n数据前5行预览:")
print(data.head())
以下是对该数据集进行预处理的步骤及顺序:
一共有17个特征,分别处理
1. **缺失值处理**
- **Annual Income**:有5943个非空值,存在缺失值。可以考虑使用均值填充、中位数填充或者基于其他相关特征进行回归预测填充。例如,如果“Home Ownership”和“Annual Income”有一定相关性,可根据不同房屋所有权类型的平均收入来填充缺失值。
- **Years in current job**:7129个非空值,存在缺失值。由于是对象类型,可能需要先将其转换为合适的数值类型再进行处理。比如将“10+ years”转换为10,“8 years”转换为8等,然后再用众数或中位数填充缺失值。
- **Months since last delinquent**:只有3419个非空值,缺失值较多。若该特征对目标变量影响较大,可尝试用多重填补法等较为复杂的方法进行填充;若影响较小,也可直接删除含有缺失值的行,但要注意可能会导致数据量损失较大。
- **Credit Score**:5943个非空值,存在缺失值。可参照“Annual Income”的处理方式,根据与其他特征的相关性来选择合适的填充方法。
2. **数据类型转换**
- **Years in current job**:将其从对象类型转换为数值类型,方便后续的计算和模型处理。
- **Home Ownership**、**Purpose**、**Term**:这些对象类型的特征可以进行独热编码或标签编码。如果特征的类别数较少且没有明显的顺序关系,独热编码较为合适;如果有一定的顺序关系,如“Term”的“Short Term”和“Long Term”,可以考虑标签编码。
3. **异常值处理**
- 对于数值型特征,如“Annual Income”“Current Loan Amount”等,可以通过箱线图等方法检测异常值。如果存在异常值,需根据实际情况决定是否进行处理。若是数据录入错误等原因导致的异常值,可以进行修正或删除;若是真实存在的极端值,可能需要保留,但在某些模型中可能需要进行特殊处理,如采用稳健的统计方法或对数据进行变换。
4. **特征缩放**
- 对数值型特征进行特征缩放,将其缩放到相同的尺度,以避免某些特征因数值较大而在模型中占据主导地位。常用的方法有Min - Max标准化和Z - score标准化。例如,“Annual Income”“Years of Credit History”“Credit Score”等特征的取值范围差异较大,可通过特征缩放将它们的取值范围统一到[0, 1]或均值为0、标准差为1的分布上。
5. **特征工程**
- **衍生新特征**:根据已有特征创建新的特征,可能会对模型性能有提升。例如,可以计算“Debt - to - Income Ratio”(负债收入比),即“Monthly Debt”与“Annual Income”的比值,来反映客户的债务负担情况。
- **特征选择**:通过相关性分析等方法,选择与目标变量“Credit Default”相关性较高的特征,去除相关性较低或冗余的特征,以降低模型的复杂度和过拟合的风险。
在实际操作中,需要先进行缺失值处理,然后进行数据类型转换,接着处理异常值,再进行特征缩放,最后进行特征工程。这样的顺序可以保证数据在预处理过程中的一致性和有效性,为后续的机器学习模型训练提供高质量的数据。
# 依次查看内容
for feature in discrete_features:
print(f"\n{feature}的唯一值:")
print(data[feature].value_counts())
# 先筛选字符串变量
discrete_features = data.select_dtypes(include=['object']).columns.tolist()
discrete_features
标签编码
# Home Ownership 标签编码
home_ownership_mapping = {
'Own Home': 1,
'Rent': 2,
'Have Mortgage': 3,
'Home Mortgage': 4
}
data['Home Ownership'] = data['Home Ownership'].map(home_ownership_mapping)
# Years in current job 标签编码
years_in_job_mapping = {
'< 1 year': 1,
'1 year': 2,
'2 years': 3,
'3 years': 4,
'4 years': 5,
'5 years': 6,
'6 years': 7,
'7 years': 8,
'8 years': 9,
'9 years': 10,
'10+ years': 11
}
data['Years in current job'] = data['Years in current job'].map(years_in_job_mapping)
# Purpose 独热编码,记得需要将bool类型转换为数值
data = pd.get_dummies(data, columns=['Purpose'])
data2 = pd.read_csv("data.csv") # 重新读取数据,用来做列名对比
list_final = [] # 新建一个空列表,用于存放独热编码后新增的特征名
for i in data.columns:
if i not in data2.columns:
list_final.append(i) # 这里打印出来的就是独热编码后的特征名
for i in list_final:
data[i] = data[i].astype(int) # 这里的i就是独热编码后的特征名
# Term 0 - 1 映射
term_mapping = {
'Short Term': 0,
'Long Term': 1
}
data['Term'] = data['Term'].map(term_mapping)
data.rename(columns={'Term': 'Long Term'}, inplace=True) # 重命名列
缺失值填充
continuous_features = data.select_dtypes(include=['int64', 'float64']).columns.tolist() #把筛选出来的列名转换成列表
# 连续特征用中位数补全
for feature in continuous_features:
mode_value = data[feature].mode()[0] #获取该列的众数。
data[feature].fillna(mode_value, inplace=True) #用众数填充该列的缺失值,inplace=True表示直接在原数据上修改。
异常值处理
data.info() #查看数据基本信息
无缺失值
机器学习建模
数据划分
# 划分训练集和测试机
from sklearn.model_selection import train_test_split
X = data.drop(['Credit Default'], axis=1) # 特征,axis=1表示按列删除
y = data['Credit Default'] # 标签
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 划分数据集,20%作为测试集,随机种子为42
# 训练集和测试集的形状
print(f"训练集形状: {X_train.shape}, 测试集形状: {X_test.shape}") # 打印训练集和测试集的形状
模型训练与评估
from sklearn.svm import SVC #支持向量机分类器
from sklearn.neighbors import KNeighborsClassifier #K近邻分类器
from sklearn.linear_model import LogisticRegression #逻辑回归分类器
import xgboost as xgb #XGBoost分类器
import lightgbm as lgb #LightGBM分类器
from sklearn.ensemble import RandomForestClassifier #随机森林分类器
from catboost import CatBoostClassifier #CatBoost分类器
from sklearn.tree import DecisionTreeClassifier #决策树分类器
from sklearn.naive_bayes import GaussianNB #高斯朴素贝叶斯分类器
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score # 用于评估分类器性能的指标
from sklearn.metrics import classification_report, confusion_matrix #用于生成分类报告和混淆矩阵
import warnings #用于忽略警告信息
warnings.filterwarnings("ignore") # 忽略所有警告信息
# SVM
svm_model = SVC(random_state=42)
svm_model.fit(X_train, y_train)
svm_pred = svm_model.predict(X_test)
print("\nSVM 分类报告:")
print(classification_report(y_test, svm_pred)) # 打印分类报告
print("SVM 混淆矩阵:")
print(confusion_matrix(y_test, svm_pred)) # 打印混淆矩阵
# 计算 SVM 评估指标,这些指标默认计算正类的性能
svm_accuracy = accuracy_score(y_test, svm_pred)
svm_precision = precision_score(y_test, svm_pred)
svm_recall = recall_score(y_test, svm_pred)
svm_f1 = f1_score(y_test, svm_pred)
print("SVM 模型评估指标:")
print(f"准确率: {svm_accuracy:.4f}")
print(f"精确率: {svm_precision:.4f}")
print(f"召回率: {svm_recall:.4f}")
print(f"F1 值: {svm_f1:.4f}")
# KNN
knn_model = KNeighborsClassifier()
knn_model.fit(X_train, y_train)
knn_pred = knn_model.predict(X_test)
print("\nKNN 分类报告:")
print(classification_report(y_test, knn_pred))
print("KNN 混淆矩阵:")
print(confusion_matrix(y_test, knn_pred))
knn_accuracy = accuracy_score(y_test, knn_pred)
knn_precision = precision_score(y_test, knn_pred)
knn_recall = recall_score(y_test, knn_pred)
knn_f1 = f1_score(y_test, knn_pred)
print("KNN 模型评估指标:")
print(f"准确率: {knn_accuracy:.4f}")
print(f"精确率: {knn_precision:.4f}")
print(f"召回率: {knn_recall:.4f}")
print(f"F1 值: {knn_f1:.4f}")
# 逻辑回归
logreg_model = LogisticRegression(random_state=42)
logreg_model.fit(X_train, y_train)
logreg_pred = logreg_model.predict(X_test)
print("\n逻辑回归 分类报告:")
print(classification_report(y_test, logreg_pred))
print("逻辑回归 混淆矩阵:")
print(confusion_matrix(y_test, logreg_pred))
logreg_accuracy = accuracy_score(y_test, logreg_pred)
logreg_precision = precision_score(y_test, logreg_pred)
logreg_recall = recall_score(y_test, logreg_pred)
logreg_f1 = f1_score(y_test, logreg_pred)
print("逻辑回归 模型评估指标:")
print(f"准确率: {logreg_accuracy:.4f}")
print(f"精确率: {logreg_precision:.4f}")
print(f"召回率: {logreg_recall:.4f}")
print(f"F1 值: {logreg_f1:.4f}")
# 朴素贝叶斯
nb_model = GaussianNB()
nb_model.fit(X_train, y_train)
nb_pred = nb_model.predict(X_test)
print("\n朴素贝叶斯 分类报告:")
print(classification_report(y_test, nb_pred))
print("朴素贝叶斯 混淆矩阵:")
print(confusion_matrix(y_test, nb_pred))
nb_accuracy = accuracy_score(y_test, nb_pred)
nb_precision = precision_score(y_test, nb_pred)
nb_recall = recall_score(y_test, nb_pred)
nb_f1 = f1_score(y_test, nb_pred)
print("朴素贝叶斯 模型评估指标:")
print(f"准确率: {nb_accuracy:.4f}")
print(f"精确率: {nb_precision:.4f}")
print(f"召回率: {nb_recall:.4f}")
print(f"F1 值: {nb_f1:.4f}")
# 决策树
dt_model = DecisionTreeClassifier(random_state=42)
dt_model.fit(X_train, y_train)
dt_pred = dt_model.predict(X_test)
print("\n决策树 分类报告:")
print(classification_report(y_test, dt_pred))
print("决策树 混淆矩阵:")
print(confusion_matrix(y_test, dt_pred))
dt_accuracy = accuracy_score(y_test, dt_pred)
dt_precision = precision_score(y_test, dt_pred)
dt_recall = recall_score(y_test, dt_pred)
dt_f1 = f1_score(y_test, dt_pred)
print("决策树 模型评估指标:")
print(f"准确率: {dt_accuracy:.4f}")
print(f"精确率: {dt_precision:.4f}")
print(f"召回率: {dt_recall:.4f}")
print(f"F1 值: {dt_f1:.4f}")
# 随机森林
rf_model = RandomForestClassifier(random_state=42)
rf_model.fit(X_train, y_train)
rf_pred = rf_model.predict(X_test)
print("\n随机森林 分类报告:")
print(classification_report(y_test, rf_pred))
print("随机森林 混淆矩阵:")
print(confusion_matrix(y_test, rf_pred))
rf_accuracy = accuracy_score(y_test, rf_pred)
rf_precision = precision_score(y_test, rf_pred)
rf_recall = recall_score(y_test, rf_pred)
rf_f1 = f1_score(y_test, rf_pred)
print("随机森林 模型评估指标:")
print(f"准确率: {rf_accuracy:.4f}")
print(f"精确率: {rf_precision:.4f}")
print(f"召回率: {rf_recall:.4f}")
print(f"F1 值: {rf_f1:.4f}")
# XGBoost
xgb_model = xgb.XGBClassifier(random_state=42)
xgb_model.fit(X_train, y_train)
xgb_pred = xgb_model.predict(X_test)
print("\nXGBoost 分类报告:")
print(classification_report(y_test, xgb_pred))
print("XGBoost 混淆矩阵:")
print(confusion_matrix(y_test, xgb_pred))
xgb_accuracy = accuracy_score(y_test, xgb_pred)
xgb_precision = precision_score(y_test, xgb_pred)
xgb_recall = recall_score(y_test, xgb_pred)
xgb_f1 = f1_score(y_test, xgb_pred)
print("XGBoost 模型评估指标:")
print(f"准确率: {xgb_accuracy:.4f}")
print(f"精确率: {xgb_precision:.4f}")
print(f"召回率: {xgb_recall:.4f}")
print(f"F1 值: {xgb_f1:.4f}")
# LightGBM
lgb_model = lgb.LGBMClassifier(random_state=42)
lgb_model.fit(X_train, y_train)
lgb_pred = lgb_model.predict(X_test)
print("\nLightGBM 分类报告:")
print(classification_report(y_test, lgb_pred))
print("LightGBM 混淆矩阵:")
print(confusion_matrix(y_test, lgb_pred))
lgb_accuracy = accuracy_score(y_test, lgb_pred)
lgb_precision = precision_score(y_test, lgb_pred)
lgb_recall = recall_score(y_test, lgb_pred)
lgb_f1 = f1_score(y_test, lgb_pred)
print("LightGBM 模型评估指标:")
print(f"准确率: {lgb_accuracy:.4f}")
print(f"精确率: {lgb_precision:.4f}")
print(f"召回率: {lgb_recall:.4f}")
print(f"F1 值: {lgb_f1:.4f}")
结果展示