//引用冯勒布的解释
//本题的核心在于寻找合法的最小子序列
//一个子序列可以从分割的条件为分割点左右两段也是合法的序列(奇数个数等于偶数个数)
//若一个序列的组成为奇偶奇偶奇偶奇偶,··,是最完美的序列,一奇一偶为一组,组间可以任意分割
//若一个序列的组成为奇偶奇奇偶偶,则只能在第二个和第三个位置之间切割,后4个元素无法再切割
//由此可以递推出本题的关键:寻找所有合法的最小子序列,记录最小子序列之间的差值并排序即可
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n,B;cin>>n>>B;
int a[n+1];
vector<int>vc;//存放差值
for(int i=1;i<=n;i++) cin>>a[i];
//sum用于记录当前子序列的和,奇数视为-1,偶数视为+1,sum加到0就是找到了一个合法序列
int sum =0;
//flag作为标志位,置1说明已经找到了一个合法的子序列,可以计算切割点处的差值
bool flag=0;
for(int i=1;i<=n;i++)
{
if(flag)//如果标志位置1,说明前面已经出现了一个合法的子序列
{
vc.push_back(abs(a[i]-a[i-1]));
flag=0;//复位
}
if(a[i]&1)//当前元素是奇数,sum--
{
sum--;
}
else//偶数
{
sum++;
}
if(sum==0)//sum回到0,说明找到了一个奇数数量等于偶数数量的子序列
{
flag=1;
}
}
int ans=0,s=0;
sort(vc.begin(),vc.end());//对所有的差值排序
for(int i=0;i<vc.size();i++)
{
if(s+vc[i]<=B)//代价累加后不大于B
{
s=s+vc[i];
ans++;
}
else break;
}
cout<<ans;
return 0;
}
lanqiao OJ3236 小蓝的零花钱
最新推荐文章于 2024-11-06 11:05:01 发布