项目需求
统计每个手机号上行流量和、下行流量和、总流量和(上行流量和+下行流量和)、并且:将统计结果按照手机号的前缀进行区分,并输出到不同的输出文件中去。
13* ==>
15* ==> …
other ==> …
其中,access.log数据文件简介
第二个字段:手机号
倒数第三个字段:上行流量
倒数第二个字段:下行流量
思路
根据手机号进行分组,然后把该手机号对应的上下行流量加起来;
Mapper: 把手机号、上行流量、下行流量拆开;添加链接描述
把手机号作为key,把Access作为value写出去Reducer形如:(“手机号”,<Access,Access>)自定义分区类(需要继承Partitioner抽象类),并覆写getPartition()方法
开发步骤
(1)自定义Access类
包括属性:手机号、上行流量、下行流量、总流量
(2)自定义Map任务类(Map Task)对每一行日志内容进行拆分,Map输出数据为:phone==>Access(手机号,该行手机号的上行流量,该行手机号的下行流量)
(3)编写Reduce任务类(Reduce Task)
对每个手机号的流量进行汇总,Map输出数据为:
phone==>Access(手机号,上行流量和,下行流量和)
也可以优化为:phone==>Access(NullWritable对象,上行流量和,下行流量和)
(4)编写分区处理类
继承org.apache.hadoop.mapreduce.Partitioner
类,"13"开头的手机号交给第一个ReduceTask任务处理,最终输出到0号分区,"15"开头的手机号交给第二个ReduceTask任务处理,最终输出到1号分区,其余手机号交给第三个ReduceTask任务处理,最终输出到2号分区。
开发详细步骤及代码
首先此处我们已经在虚拟机上安装好IDEA
然后创建新的项目以及在该项目下创建Java类进行编写程序
其中Access代码
package mapreduce;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.net.URI;
public class Textdata {
public static void main(String[] args) throws Exception{
System.setProperty("HADOOP_USER_NAME", "root");
Configuration configuration = new Configuration();
configuration.set("fs.defaultFS","hdfs://192.168.10.131:9000");
// 创建一个Job
Job job = Job.getInstance(configuration);
// 设置Job对应的参数: 主类
job.setJarByClass(Textdata.class);
// 设置Job对应的参数: 设置自定义的Mapper和Reducer处理类
job.setMapperClass(FlowMapper.class);
job.setReducerClass(FlowReduce.class);
// 添加Combiner的设置即可
job.setCombinerClass(FlowReduce.class);
// 设置Job对应的参数: Mapper输出key和value的类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
// 设置Job对应的参数: Reduce输出key和value的类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
// 如果输出目录已经存在,则先删除
FileSystem fileSystem = FileSystem.get(new URI("hdfs://192.168.10.131:9000"),configuration, "root");
Path outputPath = new Path("/wordcount/output");
if(fileSystem.exists(outputPath)) {
fileSystem.delete(outputPath,true);
}
// 设置Job对应的参数: Mapper输出key和value的类型:作业输入和输出的路径
FileInputFormat.setInputPaths(job, new Path("/home/alice/桌面/input"));
FileOutputFormat.setOutputPath(job, outputPath);
// 提交job
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : -1);
}
}
FlowDriver代码
package mapreduce;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class FlowDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
if (args.length < 2) {
System.err.println("Usage: FlowDriver <inputPath> <outputPath>");
System.exit(1);
}
Configuration configuration = new Configuration();
Job job = Job.getInstance(configuration, "Flow Calculation");
job.setJarByClass(FlowDriver.class);
job.setMapperClass(FlowMapper.class);
job.setReducerClass(FlowReduce.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Access.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Access.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}
FlowMapper代码
package mapreduce;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class FlowMapper extends Mapper<LongWritable, Text, Text, Access>{
Text k=new Text();
Access v=new Access();
@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String line=value.toString();
String[] fields=line.split("\t");
String phNum=fields[1];
long upFlow=Long.parseLong(fields[fields.length-3]);
long downFlow=Long.parseLong(fields[fields.length-2]);
k.set(phNum);
v.set(upFlow,downFlow);
context.write(k, v);
}
}
FlowReduce代码
package mapreduce;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class FlowReduce extends Reducer<Text, Access, Text, Access>{
@Override
protected void reduce(Text key, Iterable<Access> values, Context context)
throws IOException, InterruptedException {
long sumUpFlow=0;
long sumDownFlow=0;
System.out.println(values);
for (Access access : values) {
sumUpFlow+= access.getUpflow();
sumDownFlow+= access.getDownflow();
}
Access v=new Access(sumUpFlow,sumDownFlow);
context.write(key, v);
}
}
PhonePartitioner代码
package mapreduce;
import mapreduce.Access;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;
public class PhonePartitioner extends Partitioner<Text, Access> {
@Override
public int getPartition(Text key, Access value, int numPartitions) {
String phonePrefix = key.toString().substring(0, 2);
switch (phonePrefix) {
case "13":
return 0;
case "15":
return 1;
default:
return 2;
}
}
}
Textdata代码
package mapreduce;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.net.URI;
public class Textdata {
public static void main(String[] args) throws Exception{
System.setProperty("HADOOP_USER_NAME", "root");
Configuration configuration = new Configuration();
configuration.set("fs.defaultFS","hdfs://192.168.10.131:9000");
// 创建一个Job
Job job = Job.getInstance(configuration);
// 设置Job对应的参数: 主类
job.setJarByClass(Textdata.class);
// 设置Job对应的参数: 设置自定义的Mapper和Reducer处理类
job.setMapperClass(FlowMapper.class);
job.setReducerClass(FlowReduce.class);
// 添加Combiner的设置即可
job.setCombinerClass(FlowReduce.class);
// 设置Job对应的参数: Mapper输出key和value的类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
// 设置Job对应的参数: Reduce输出key和value的类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
// 如果输出目录已经存在,则先删除
FileSystem fileSystem = FileSystem.get(new URI("hdfs://192.168.10.131:9000"),configuration, "root");
Path outputPath = new Path("/wordcount/output");
if(fileSystem.exists(outputPath)) {
fileSystem.delete(outputPath,true);
}
// 设置Job对应的参数: Mapper输出key和value的类型:作业输入和输出的路径
FileInputFormat.setInputPaths(job, new Path("/home/alice/桌面/input"));
FileOutputFormat.setOutputPath(job, outputPath);
// 提交job
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : -1);
}
}
启动集群使其能够在hdfs页面正确展示
#在虚拟机或者XShell里进入sbin根目录
cd /export/servers/hadoop-3.2.0/sbin/
输入此代码开启集群
./start-all.sh
输入jps查看节点
jps
结果展示
输入的数据展示
输出数据
以13+开头的电话号码
以15+开头的电话号码
其他号码
具体代码可以看:记得点赞收藏哦!