手机流量统计项目【实训日志1】

项目需求

统计每个手机号上行流量和、下行流量和、总流量和(上行流量和+下行流量和)、并且:将统计结果按照手机号的前缀进行区分,并输出到不同的输出文件中去。
13* ==>
15* ==> …
other ==> …
其中,access.log数据文件简介
第二个字段:手机号
倒数第三个字段:上行流量
倒数第二个字段:下行流量

思路

根据手机号进行分组,然后把该手机号对应的上下行流量加起来;
Mapper: 把手机号、上行流量、下行流量拆开;添加链接描述
把手机号作为key,把Access作为value写出去Reducer形如:(“手机号”,<Access,Access>)自定义分区类(需要继承Partitioner抽象类),并覆写getPartition()方法

开发步骤

(1)自定义Access类
包括属性:手机号、上行流量、下行流量、总流量

(2)自定义Map任务类(Map Task)对每一行日志内容进行拆分,Map输出数据为:phone==>Access(手机号,该行手机号的上行流量,该行手机号的下行流量)

(3)编写Reduce任务类(Reduce Task)
对每个手机号的流量进行汇总,Map输出数据为:
phone==>Access(手机号,上行流量和,下行流量和)
也可以优化为:phone==>Access(NullWritable对象,上行流量和,下行流量和)

(4)编写分区处理类
继承org.apache.hadoop.mapreduce.Partitioner
类,"13"开头的手机号交给第一个ReduceTask任务处理,最终输出到0号分区,"15"开头的手机号交给第二个ReduceTask任务处理,最终输出到1号分区,其余手机号交给第三个ReduceTask任务处理,最终输出到2号分区。

开发详细步骤及代码

首先此处我们已经在虚拟机上安装好IDEA
将IDEA放在虚拟机桌面上
然后创建新的项目以及在该项目下创建Java类进行编写程序
在这里插入图片描述
其中Access代码

package mapreduce;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.net.URI;

public class Textdata {
    public static void main(String[] args) throws Exception{

        System.setProperty("HADOOP_USER_NAME", "root");

        Configuration configuration = new Configuration();
        configuration.set("fs.defaultFS","hdfs://192.168.10.131:9000");


        // 创建一个Job
        Job job = Job.getInstance(configuration);

        // 设置Job对应的参数: 主类
        job.setJarByClass(Textdata.class);

        // 设置Job对应的参数: 设置自定义的Mapper和Reducer处理类
        job.setMapperClass(FlowMapper.class);
        job.setReducerClass(FlowReduce.class);

        // 添加Combiner的设置即可
        job.setCombinerClass(FlowReduce.class);

        // 设置Job对应的参数: Mapper输出key和value的类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);

        // 设置Job对应的参数: Reduce输出key和value的类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        // 如果输出目录已经存在,则先删除
        FileSystem fileSystem = FileSystem.get(new URI("hdfs://192.168.10.131:9000"),configuration, "root");
        Path outputPath = new Path("/wordcount/output");
        if(fileSystem.exists(outputPath)) {
            fileSystem.delete(outputPath,true);
        }

        // 设置Job对应的参数: Mapper输出key和value的类型:作业输入和输出的路径
        FileInputFormat.setInputPaths(job, new Path("/home/alice/桌面/input"));
        FileOutputFormat.setOutputPath(job, outputPath);

        // 提交job
        boolean result = job.waitForCompletion(true);

        System.exit(result ? 0 : -1);

    }
}

FlowDriver代码

package mapreduce;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class FlowDriver {
    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        if (args.length < 2) {
            System.err.println("Usage: FlowDriver <inputPath> <outputPath>");
            System.exit(1);
        }

        Configuration configuration = new Configuration();
        Job job = Job.getInstance(configuration, "Flow Calculation");

        job.setJarByClass(FlowDriver.class);

        job.setMapperClass(FlowMapper.class);
        job.setReducerClass(FlowReduce.class);

        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(Access.class);

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Access.class);

        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }
}

FlowMapper代码

package mapreduce;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;


public class FlowMapper extends Mapper<LongWritable, Text, Text, Access>{
    Text k=new Text();
    Access v=new Access();
    @Override
    protected void map(LongWritable key, Text value, Context context)
            throws IOException, InterruptedException {
        String line=value.toString();
        String[] fields=line.split("\t");
        String phNum=fields[1];
        long upFlow=Long.parseLong(fields[fields.length-3]);
        long downFlow=Long.parseLong(fields[fields.length-2]);

        k.set(phNum);
        v.set(upFlow,downFlow);
        context.write(k, v);
    }
}

FlowReduce代码

package mapreduce;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;


public class FlowReduce extends Reducer<Text, Access, Text, Access>{

    @Override
    protected void reduce(Text key, Iterable<Access> values, Context context)
            throws IOException, InterruptedException {
        long sumUpFlow=0;
        long sumDownFlow=0;
        System.out.println(values);
        for (Access access : values) {
            sumUpFlow+= access.getUpflow();
            sumDownFlow+= access.getDownflow();
        }
        Access v=new Access(sumUpFlow,sumDownFlow);
        context.write(key, v);
    }
}

PhonePartitioner代码

package mapreduce;
import mapreduce.Access;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;

public class PhonePartitioner extends Partitioner<Text, Access> {
    @Override
    public int getPartition(Text key, Access value, int numPartitions) {
        String phonePrefix = key.toString().substring(0, 2);
        switch (phonePrefix) {
            case "13":
                return 0;
            case "15":
                return 1;
            default:
                return 2;
        }
    }
}

Textdata代码

package mapreduce;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.net.URI;

public class Textdata {
    public static void main(String[] args) throws Exception{

        System.setProperty("HADOOP_USER_NAME", "root");

        Configuration configuration = new Configuration();
        configuration.set("fs.defaultFS","hdfs://192.168.10.131:9000");


        // 创建一个Job
        Job job = Job.getInstance(configuration);

        // 设置Job对应的参数: 主类
        job.setJarByClass(Textdata.class);

        // 设置Job对应的参数: 设置自定义的Mapper和Reducer处理类
        job.setMapperClass(FlowMapper.class);
        job.setReducerClass(FlowReduce.class);

        // 添加Combiner的设置即可
        job.setCombinerClass(FlowReduce.class);

        // 设置Job对应的参数: Mapper输出key和value的类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);

        // 设置Job对应的参数: Reduce输出key和value的类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        // 如果输出目录已经存在,则先删除
        FileSystem fileSystem = FileSystem.get(new URI("hdfs://192.168.10.131:9000"),configuration, "root");
        Path outputPath = new Path("/wordcount/output");
        if(fileSystem.exists(outputPath)) {
            fileSystem.delete(outputPath,true);
        }

        // 设置Job对应的参数: Mapper输出key和value的类型:作业输入和输出的路径
        FileInputFormat.setInputPaths(job, new Path("/home/alice/桌面/input"));
        FileOutputFormat.setOutputPath(job, outputPath);

        // 提交job
        boolean result = job.waitForCompletion(true);

        System.exit(result ? 0 : -1);

    }
}

启动集群使其能够在hdfs页面正确展示
#在虚拟机或者XShell里进入sbin根目录

cd /export/servers/hadoop-3.2.0/sbin/

输入此代码开启集群

./start-all.sh

集群启动成功
输入jps查看节点

jps

节点展示

结果展示

输入的数据展示输入数据
输出数据
以13+开头的电话号码
13+

以15+开头的电话号码
15+
其他号码
其他数字开头的号码
具体代码可以看:记得点赞收藏哦!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值