Linear subspace

In mathematics, and more specifically in linear algebra, a linear subspace, also known as a vector subspace is a vector space that is a subset of some larger vector space. A linear subspace is usually simply called a subspace when the context serves to distinguish it from other types of subspaces.

1 Definition


If V V V is a vector space over a field K K K and if W W W is a subset of V V V, then W W W is a linear subspace of V V V if under the operations of V V V, W W W is a vector space over K K K. Equivalently, a [nonempty( ) subset W W W is a subspace of V V V if, whenever w 1 , w 2 w1, w2 w1,w2 are elements of W W W and α , β \alpha, \beta α,β are elements of K K K, it follows that α w 1 + β w 2 \alpha w1 + \beta w2 αw1+βw2 is in W W W.

As a corollary, all vector space are equipped with at least two (possibly different) linear subspaces: the zero vector space consisting of the zero vector alone and the entire vector space itself. These are called the trivial subspaces of the vector space.

2 Examples


2.1 Example I


Let the field K K K be the set R R R of real numbers, and let the vector space V V V be the real coordinate space R 3 R^3 R3. Take W W W to be the set of all vectors in V V V whose last component is 0 0 0. Then W W W is a subspace of V V V.

Proof:

  1. Given u u u and v v v in W W W, then they can be expressed as u = ( u 1 , u 2 , 0 ) , v = ( v 1 , v 2 , 0 ) u = (u1, u2, 0), v = (v1, v2, 0) u=(u1,u2,0),v=(v1,v2,0), Then u + v = ( u 1 + v 1 , u 2 + v 2 , 0 + 0 ) u + v = (u1 + v1, u2 + v2, 0 + 0) u+v=(u1+v1,u2+v2,0+0), Thus, u + v u + v u+v is an element of W W W, too.
  2. Given u u u in W W W and a scalar c c c in R R R, if u = ( u 1 , u 2 , 0 ) u = (u1, u2, 0) u=(u1,u2,0) again, then c u = ( c u 1 , c u 2 , c 0 ) = ( c u 1 , c u 2 , 0 ) cu = (cu1, cu2, c0) = (cu1, cu2, 0) cu=(cu1,cu2,c0)=(cu1,cu2,0). Thus, c u cu cu is an element of W W W too.

2.2 Example II


Let The field be R R R again, but now let the vector space V V V be the Cartesian plane R 2 R^2 R2. Take W W W to be the set of points (x, y) of R 2 R^2 R2 such that x = y x = y x=y. Then W W W is a subspace of R 2 R^2 R2.

Proof:

  1. Let p = ( p 1 , p 2 ) p = (p1, p2) p=(p1,p2) and q = ( q 1 , q 2 ) q = (q1, q2) q=(q1,q2) be elements of W W W, that is, points in the plane such that p 1 = p 2 , q 1 = q 2 p1 = p2, q1 = q2 p1=p2,q1=q2. Then p + q = ( p 1 + q 1 , p 2 + q 2 ) p + q = (p1 + q1, p2 + q2) p+q=(p1+q1,p2+q2); since p 1 = p 2 , q 1 = q 2 p1 = p2, q1 = q2 p1=p2,q1=q2, then p 1 + q 1 = p 2 + q 2 p1 + q1 = p2 + q2 p1+q1=p2+q2, so p + q p + q p+q in an element of W W W.
  2. Let p = ( p 1 , p 2 ) p = (p1,p2) p=(p1,p2) be an element of W W W, that is, a point in the plane such that p 1 = p 2 p1 = p2 p1=p2, and let c c c be a scalar in R R R. The c p = ( c p 1 , c p 2 ) ; cp = (cp1, cp2); cp=(cp1,cp2); since p 1 = p 2 p1 = p2 p1=p2, then c p 1 = c p 2 cp1 = cp2 cp1=cp2, so c p cp cp is an element of W W W.

In general, any subset of the real coordinate space R n R^n Rn that is defined by a system of homogeneous linear equations will yield a subspace. (The equation in example I was z = 0 z = 0 z=0, and the equation in example II was x = y x = y x=y)

2.3 Example III


Again take the field to be R R R, but now let the vector space V V V be the se R R R^R RR of all functions from R R R to R R R. Let C ( R ) C(R) C(R) be the subset consisting of continuous functions. Then C ( R ) C(R) C(R) is a subspace of R R R^R RR.

Proof:

  1. We know from calculus that 0 ∈ C ( R ) ⊂ R R 0 \in C(R) \subset R^R 0C(R)RR
  2. We know from calculus that the sum of continuous functions is continuous.
  3. Again, we know from calculus that the product of a continuous function and a number is continuous.

2.4 Example IV


Keep the same field and vector space as before, but now consider the set D i f f ( R ) Diff(R) Diff(R) of all differentiable function. The same sort of argument as before shows that this is a subspace too.

Examples that extend these themes are common in functional analysis.

4 properties of subspaces


4.1 Systems of linear equations


4.2 Null space of a matrix


4.3 Linear parametric equations


4.4 Span of vectors


4.5 Column space and row space


4.6 Independence, basis, and dimension


5 Operations and relations on subspaces


5.1 Inclusion


5.2 Intersection


5.3 Sum


5.4 Lattice of subspaces


5.5 Orthogonal complements


6 Algorithms


6.1 Basis for a row space


6.2 Subspace membership


6.3 Basis for a column space


6.4 Coordinates for a vector


6.5 Basis for a null space


6.6 Basis for the sum and intersection of two subspaces


6.7 Equations for a subspace


7 See also


8 Notes


9 Citations


10 Sources


10.1 Textbook


10.2 Web


11 External links

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值