Vector-valued functioin

A vector-valued function, also referred to as a vector function, is a mathematical function of one or more variables whose range is a set of multidimensional vectors or infinite-dimensional vectors. The input of a vector-valued function could be a scalar or a vector (that is, the dimension of the domain could be 1 1 1 or greater than 1 1 1); the dimension of the function’s domain has no relation to the dimension of its range.

1 Example: Helix


A common example of a vector-valued function is one that depends on a single real parameter t t t, often representing time, producing a vector v ( t ) v(t) v(t) as the result. In terms of the standard unit vectors i , j , k i, j, k i,j,k of Cartesian 3-space, these specific types of vector-valued functions are given by expressions such as
r ( t ) = f ( t ) i + g ( t ) j + h ( t ) k {\displaystyle \mathbf {r} (t)=f(t)\mathbf {i} +g(t)\mathbf {j} +h(t)\mathbf {k} } r(t)=f(t)i+g(t)j+h(t)k
where f ( t ) , g ( t ) , h ( t ) f(t), g(t), h(t) f(t),g(t),h(t) are the coordinate functions of the parameter t t t, and the domain of this vector-valued function is the intersection of the domains of the functions f , g , h f, g, h f,g,h. It can also be referred to in a different notation:
r ( t ) = ⟨ f ( t ) , g ( t ) , h ( t ) ⟩ {\displaystyle \mathbf {r} (t)=\langle f(t),g(t),h(t)\rangle } r(t)=f(t),g(t),h(t)⟩

The vector r ( t ) r(t) r(t) has its tail at the origin and its head at the coordinates evaluated by the function.

The vector shown in the graph to the right is the evaluation of function ⟨ 2 cos ⁡ t ,   4 sin ⁡ t ,   t ⟩ {\displaystyle \langle 2\cos t,\,4\sin t,\,t\rangle } 2cost,4sint,t near t = 19.5 t = 19.5 t=19.5 (between 6 π 6 \pi 6π and 6.5 π 6.5 \pi 6.5π; i.e., somewhat more than 3 rotations). The helix is the path traced by the tip of the vector as t t t increases from zero through 8 π 8\pi 8π.

In 2 D 2D 2D, We can analogously speak about vector-valued functions as
r ( t ) = f ( t ) i + g ( t ) j {\displaystyle \mathbf {r} (t)=f(t)\mathbf {i} +g(t)\mathbf {j} } r(t)=f(t)i+g(t)j
or
r ( t ) = ⟨ f ( t ) , g ( t ) ⟩ {\displaystyle \mathbf {r} (t)=\langle f(t),g(t)\rangle } r(t)=f(t),g(t)⟩

2 Linear case


In the linear case the function can be expressed in terms of matrices:
y = A x y = Ax y=Ax
where y y y is an n ∗ 1 n * 1 n1 output vector, x x x is a k ∗ 1 k * 1 k1 vector of inputs, and A A A is an n ∗ k n * k nk matrix of paramters. Closely related is the affine case (linear up to translation) where the function takes the form
y = A x + b y = Ax + b y=Ax+b
where in addition b b b is an n ∗ 1 n * 1 n1 vector of parameters.

The linear case arises often, for example in multiple regression, where for instance the n ∗ 1 n * 1 n1 vector y ^ {\hat {y}} y^ of predicted values of a dependent value is expressed linearly in terms of a k ∗ 1 k * 1 k1 vector β ^ \hat \beta β^ (k < n) of estimated values of model parameters:
y ^ = X β ^ , {\displaystyle {\hat {y}}=X{\hat {\beta }},} y^=Xβ^,
in which X X X (playing the role of A A A in the previous generic form) is an n ∗ k n * k nk matrix of fixed (empirically based) numbers.

3 Parametric representation of a surface


A surface of a 2-dimensional set of points embedded in (most commonly) 3-dimensional space. One way to represent a surface is with parametric equations. In which two parameters s , t s, t s,t determine the three Cartesian coordinates of any point on the surface:
( x , y , z ) = ( f ( s , t ) , g ( s , t ) , h ( s , t ) ) ≡ F ( s , t ) . {\displaystyle (x,y,z)=(f(s,t),g(s,t),h(s,t))\equiv F(s,t).} (x,y,z)=(f(s,t),g(s,t),h(s,t))F(s,t).
Here F F F is a vector-valued function. For a surface embedded in n-dimensional space, one similarly has the representation:
( x 1 , x 2 , . . . , x n ) = ( f 1 ( s , t ) , f 2 ( s , t ) , . . . , f n ( s , t ) ) ≡ F ( s , t ) . {\displaystyle (x_{1},x_{2},...,x_{n})=(f_{1}(s,t),f_{2}(s,t),...,f_{n}(s,t))\equiv F(s,t).} (x1,x2,...,xn)=(f1(s,t),f2(s,t),...,fn(s,t))F(s,t).

4 Derivative of a three-dimensional vector function


Many vector-valued functions, like scalar-valued functions, can be differentiated by simply differentiating the components in the Cartesian coordinate system. Thus, if
r ( t ) = f ( t ) i + g ( t ) j + h ( t ) k {\displaystyle \mathbf {r} (t)=f(t)\mathbf {i} +g(t)\mathbf {j} +h(t)\mathbf {k} } r(t)=f(t)i+g(t)j+h(t)k
is a vector-valued function, then
d r d t = f ′ ( t ) i + g ′ ( t ) j + h ′ ( t ) k . {\displaystyle {\frac {d\mathbf {r} }{dt}}=f'(t)\mathbf {i} +g'(t)\mathbf {j} +h'(t)\mathbf {k} .} dtdr=f(t)i+g(t)j+h(t)k.

The vector derivative admits the following physical interpretation: if r ( t ) r(t) r(t) represents the position of a particle, then the derivative is the velocity of the particle
v ( t ) = d r d t . {\displaystyle \mathbf {v} (t)={\frac {d\mathbf {r} }{dt}}.} v(t)=dtdr.

Likewise, the derivative of the velocity is the acceleration
d v d t = a ( t ) . {\displaystyle {\frac {d\mathbf {v} }{dt}}=\mathbf {a} (t).} dtdv=a(t).

4.1 Partial derivative


4.2 Ordinary derivative


4.3 Total derivative


4.4 References frames


4.5 Derivative of a vector function with nonfixed bases


4.6 Derivative and vector multiplication


5 Derivative of an n-dimensional vector function


6 Infinite-dimensional vector functions


6.1 Functions with values in a Hilbert space


6.2 Other infinite-dimensional vector spaces


7 See also


8 Notes


9 References


10 External links

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值