一个旅游景点,如果被带火了的话,就被称为“网红点”。大家来网红点游玩,俗称“打卡”。在各个网红点打卡的快(省)乐(钱)方法称为“攻略”。你的任务就是从一大堆攻略中,找出那个能在每个网红点打卡仅一次、并且路上花费最少的攻略。
输入格式:
首先第一行给出两个正整数:网红点的个数 N(1<N≤200)和网红点之间通路的条数 M。随后 M 行,每行给出有通路的两个网红点、以及这条路上的旅行花费(为正整数),格式为“网红点1 网红点2 费用”,其中网红点从 1 到 N 编号;同时也给出你家到某些网红点的花费,格式相同,其中你家的编号固定为 0
。
再下一行给出一个正整数 K,是待检验的攻略的数量。随后 K 行,每行给出一条待检攻略,格式为:
n V1 V2 ⋯ Vn
其中 n(≤200) 是攻略中的网红点数,Vi 是路径上的网红点编号。这里假设你从家里出发,从 V1 开始打卡,最后从 Vn 回家。
输出格式:
在第一行输出满足要求的攻略的个数。
在第二行中,首先输出那个能在每个网红点打卡仅一次、并且路上花费最少的攻略的序号(从 1 开始),然后输出这个攻略的总路费,其间以一个空格分隔。如果这样的攻略不唯一,则输出序号最小的那个。
题目保证至少存在一个有效攻略,并且总路费不超过 109。
输入样例:
6 13
0 5 2
6 2 2
6 0 1
3 4 2
1 5 2
2 5 1
3 1 1
4 1 2
1 6 1
6 3 2
1 2 1
4 5 3
2 0 2
7
6 5 1 4 3 6 2
6 5 2 1 6 3 4
8 6 2 1 6 3 4 5 2
3 2 1 5
6 6 1 3 4 5 2
7 6 2 1 3 4 5 2
6 5 2 1 4 3 6
输出样例:
3
5 11
样例说明:
第 2、3、4、6 条都不满足攻略的基本要求,即不能做到从家里出发,在每个网红点打卡仅一次,且能回到家里。所以满足条件的攻略有 3 条。
第 1 条攻略的总路费是:(0->5) 2 + (5->1) 2 + (1->4) 2 + (4->3) 2 + (3->6) 2 + (6->2) 2 + (2->0) 2 = 14;
第 5 条攻略的总路费同理可算得:1 + 1 + 1 + 2 + 3 + 1 + 2 = 11,是一条更省钱的攻略;
第 7 条攻略的总路费同理可算得:2 + 1 + 1 + 2 + 2 + 2 + 1 = 11,与第 5 条花费相同,但序号较大,所以不输出。
import sys
from collections import defaultdict
n,m = map(int,sys.stdin.readline().split())
d = defaultdict(dict)
for i in range(m):
x,y,z = map(int,sys.stdin.readline().split())
d[x][y] = z
d[y][x] = z
#将网红点位置以字典套字典的方式存 例如:{0: {5: 2, 6: 1, 2: 2}
#表示0可以到5需要花费2,可以到6,需要花费1,可以到2,需要花费2
def zhi(ls:list,num):
sum = 0
for i in ls[1:]+[0]: #路线最后加上回家,也要算经费的,不能回家也是不满足要求
if i in d[num]:
sum+=d[num][i] #用字典的形式,访问不到说明没有这条路,直接返回不行
num = i
else:
return False
return sum #这个求和时求的总花费,包括回家和从家出发
num = int(sys.stdin.readline())
ls = []
for j in range(num):
s = list(map(int,sys.stdin.readline().split()))
x1 = s[1:]
x2 = set(s[1:])
if len(x1) == len(x2) == n: #只有当访问的网红点位置不重复,并且全部访问
# print(zhi(s,0))
y = zhi(s,0) #调用函数,只有当从0(家)出发并且能回0(家)才算满足要求
if y:
ls.append([j+1,y])
print(len(ls))
ls.sort(key=lambda x:(x[1],x[0])) #进行排序,花费从小到大,攻略序号从小到大
print(ls[0][0],ls[0][1]) #取第一个,满足要求