- 博客(6)
- 收藏
- 关注
原创 **深度学习入门笔记**:四、PaddlePaddle CV(包括VGG的使用)
接受并执行program,会一次执行Program中定义的所有计算,通过feed来传入参数,通过fetch_list来获取执行结果。处理边长数据信息,将长度不一致的维度拼接成一个更大的维度,并引入了一个索引结构来将张量分割成序列。,建立一个全连接层,接受多个输入,为每个输入分配一个权重w,并维护一个偏置b,预测时产生一个输出。变量空间,存储fluid创建的变量。: 对用户来说一个完整的程序,一个网络,包括各项任务,例如卷积池化全连接。优化器,用于优化网络,用来对损失函数做梯度下降优化,从而求得最小损失值。
2024-11-09 03:11:30
1516
原创 **深度学习入门笔记**:三、tensorflow基本操作
数据读取—>数据预处理—>构建模型—>训练—>测试—>画图。利用梯度带实现自动求梯度。mnist手写体识别代码。
2024-11-07 08:35:17
378
2
原创 **深度学习入门笔记**:二、深度神经网络训练,卷积神经网络,循环神经网络概述
对于多个隐藏层的神经网络,输出层可以直接求出误差来更新参数(损失函数求导,求得每个权重的梯度,采用梯度下降法训练)但是隐藏层的误差是不存在的,因此不能对它直接应用梯度下降,而是先将误差反向传播到隐藏层,然后再应用梯度下降 乘法(红色代表误差) 加法1)深度5层,2个卷积+3个全连接2)地位:奠定了CNN的基本结构。
2024-11-07 08:21:32
1392
原创 深度学习入门笔记:一、*深度学习概述、深度神经网络结构*(自写感知机,激活函数和交叉熵代码)
当梯度向量为0(或接近0),说明损失函数到达一个极小值点,模型准确度达到一个极大值点。通过这样的方法,改变每个神经元与其他神经元的链接权重及自身的偏置,让损失函数的值下降的更快进而将值收敛到损失函数的某个极小值。某一个函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向变化最快,变化率最大。通过损失函数,将“寻找最优参数问题”,转换为了”寻找损失函数最小值“问题。>不需要特征工程(从数据中发现特征,提取特征,筛选特征的过程)>感知机,又称神经元,是神经网络的起源算法,它可以。
2024-11-07 06:52:08
1472
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人