这份笔记描述了,如何用广度优先和深度优先两种不同思路来求解洛谷P1451(求细胞数量)
母题:洛谷P1451求细胞数量
题目描述
一矩形阵列由数字 0 0 0 到 9 9 9 组成,数字 1 1 1 到 9 9 9 代表细胞,细胞的定义为沿细胞数字上下左右若还是细胞数字则为同一细胞,求给定矩形阵列的细胞个数。
输入格式
第一行两个整数代表矩阵大小 n n n 和 m m m。
接下来
n
n
n 行,每行一个长度为
m
m
m 的只含字符 0
到 9
的字符串,代表这个
n
×
m
n \times m
n×m 的矩阵。
输出格式
一行一个整数代表细胞个数。
样例 #1
样例输入 #1
4 10
0234500067
1034560500
2045600671
0000000089
样例输出 #1
4
提示
数据规模与约定
对于 100 % 100\% 100% 的数据,保证 1 ≤ n , m ≤ 100 1 \le n,m \le 100 1≤n,m≤100。
题解思路:
对于找到的每一个,没有标记(bool地图对应位置标记为false)的1-9的数字(新的细胞),都标记这个位置,并且把找到细胞的数量count+1,接下来,找到与当前位置直接或间接相连的所有没有标记的周围细胞(注意,周围细胞一定要在地图nm的范围内),如此,完成一次循环,直到遍历完所有输入位置(nm)之后,就找到了所有的成块的细胞,count此时存储的就是所有细胞的数量。
find函数使用队列来实现广度优先搜索
find2函数以递归的思路来实现了深度优先搜索
注释由AI生成
欢迎各位同学分享更多思路
#include <bits/stdc++.h>
using namespace std;
char a[100][100]; // 存储地图的字符数组
bool b[100][100]; // 标记访问状态的布尔数组
/**
* 使用BFS寻找所有岛屿的起点
* @param x 起点的x坐标
* @param y 起点的y坐标
* @param n 地图的行数
* @param m 地图的列数
*/
//广度优先
void find(int x, int y, int n, int m)
{
queue<pair<int, int>> myque;
myque.push({x, y}); // 将起点放入队列
while (!myque.empty())
{
pair<int, int> p = myque.front();
myque.pop();
int x = p.first;
int y = p.second;
int me[4][2] = {{0, 1}, {0, -1}, {-1, 0}, {1, 0}}; // 定义四个方向的偏移量
for (int k = 0; k < 4; k++)
{
int x1 = x + me[k][0];
int y1 = y + me[k][1];
// 如果新位置合法、未被访问且不是水域,则标记为已访问并加入队列
if (x1 >= 0 && x1 < n && y1 >= 0 && y1 < m && a[x1][y1] != '0' && b[x1][y1] == false)
{
b[x1][y1] = true;
myque.push({x1, y1});
}
}
}
return;
}
/**
* 递归函数,用于DFS遍历连通的岛屿
* @param i 当前位置的x坐标
* @param j 当前位置的y坐标
* @param n 地图的行数
* @param m 地图的列数
*/
//深度优先
void find2(int i,int j,int n,int m){
int k[4][2] = {{0, 1}, {0, -1}, {-1, 0}, {1, 0}}; // 定义四个方向的偏移量
b[i][j] = true; // 标记当前位置为已访问
for (int index = 0; index < 4;index++){
int x1 = i + k[index][0];
int y1 = j + k[index][1];
// 如果新位置合法、未被访问且不是水域,则递归访问
if (x1 >= 0 && x1 < n && y1 >= 0 && y1 < m && a[x1][y1] != '0' && b[x1][y1] == false){
find2(x1, y1, n, m);
}
}
return;
}
int main()
{
int n, m; // 地图的行和列
cin >> n >> m;
int count = 0; // 记录岛屿数量
for (int i = 0; i < n; i++)
{
for (int j = 0; j < m; j++)
{
cin >> a[i][j]; // 输入地图
b[i][j] = false; // 初始化访问状态
}
}
for (int i = 0; i < n; i++)
{
for (int j = 0; j < m; j++)
{
// 忽略已访问或为水域的位置,否则递归搜索该岛屿
if (b[i][j] == true || a[i][j] == '0')
{
continue;
}
else
{
count++;
find2(i, j, n, m);
}
}
}
cout << count; // 输出岛屿数量
return 0;
}