- 博客(65)
- 收藏
- 关注
原创 SNN(TTFS)论文阅读——High-performance deep spiking neural networks with 0.3 spikes per neuron(下)
本文详细阐述了ReLU网络转换为脉冲神经网络(SNN)的核心技术细节。首先解释了$X_n$参数对应ReLU网络第n层的最大激活值,用于确定SNN的时间窗宽度。其次说明了"融合BN"的技术原理,即将BN层的运算合并到相邻层中以简化网络结构。重点论证了SNN的膜电位与ReLU激活值之间的数学等价性,证明了最大膜电位等价于最大激活值。接着阐述了输入层时间窗固定为[0,1]的设计考量,以及ReLU-SNN转换的本质是通过时间编码实现数值运算的等效转换。全文系统地揭示了ReLU网络精确转换为SNN
2025-11-12 16:32:23
700
原创 SNN(TTFS)论文阅读——High-performance deep spiking neural networks with 0.3 spikes per neuron(上)
本文提出了一种高效深度脉冲神经网络(SNN)模型,采用TTFS编码方式将输入像素强度转换为脉冲发放时间,实现每神经元仅需0.3个脉冲的高效计算。通过双区段神经元模型,在异步累积期整合输入脉冲,并在线性冲刺期进行快速计算,最终建立与ReLU激活函数的等效映射。该模型通过时间编码实现信息传递,在保持计算精度的同时显著降低了脉冲发放频率和能耗。数学推导表明,该SNN模型可等效转换为标准ReLU神经网络,为深度SNN的实际应用提供了理论基础。
2025-11-10 19:39:34
654
原创 SNN(TTFS)论文阅读——LC-TTFS
本文提出LC-TTFS算法,旨在实现人工神经网络(ANN)到脉冲神经网络(SNN)的无损转换。通过数学推导证明,在三个关键约束条件下:1)每层神经元输入权重和为1;2)发放阈值设为1;3)采用动态阈值与ReLU1激活的对称性,可以建立ANN激活值与SNN脉冲时间之间的完美映射关系。该证明使用数学归纳法,首先假设l-1层满足编码关系,然后严格推导出l层也保持相同关系。特别指出批量归一化(BN)会破坏权重归一化约束,导致推导失效,因此算法中不能使用BN层。这一成果解决了ANN到SNN转换中的时空扭曲问题,实现了
2025-11-02 21:35:58
885
原创 SNN(TTFS)论文阅读——Temporal-Coded Spiking Neural Networks with Dynamic Firing Threshold
对于任何一个发放了脉冲的突触后神经元。
2025-11-01 18:10:26
634
原创 SNN论文阅读——Apprenticeship-Inspired Elegance
学霸对正确答案只是略微确信时,学生也应该表现出类似的略微确信。这个公式定义了学生网络(Student Network)训练的总目标。论文特意强调,这与SEEN方法([Zhang et al., 2023])不同。(即Softmax前的logits或之后的概率分布)。,让学生网络的整个输出序列(轨迹)都与教师网络的序列尽可能相似。) 之间的交叉熵损失,然后对所有时间步的损失。:不仅要让学生学会“答对”,还要让学生学会“都与教师网络在该时间步的预测分布保持一致。本身也蕴含着丰富的知识。的时候的分布尽可能一致。
2025-10-06 18:07:13
1070
原创 SNN论文阅读——In the Blink of an Eye: Event-based Emotion Recognition
这篇论文的核心是抛弃了传统RGB摄像头+标准CNN的路线,转而采用一种这套组合旨在解决传统方法在和下的脆弱性问题。
2025-10-03 11:11:59
1182
1
原创 情绪识别论文阅读——EMO
现有的个性化解决方案通常为每个用户建立一个专用的模型。这些解决方案不仅具有非常高的模型训练成本,而且每个用户的训练数据不足。,得到一组对应的特征向量。聚类算法(这里K=1)对清洗后的特征向量集群进行计算,得到该集群的。特征提取器的后半部分和分类器,直接被赋予与上一帧相同的情绪标签。这个点就是用户做第i种表情时,最典型、最标准的特征向量。后续所有的处理步骤,直接赋予它和上一帧相同的情绪标签。,用于计算当前帧的特征向量与上一帧缓存的特征向量之间的。,为后续学习更难的眼部情绪识别打下坚实的基础。
2025-09-28 15:59:11
792
原创 情绪识别论文阅读——Eyemotion
当你戴着一个VR头盔(头戴显示器)时,你的大半张脸都被遮住了。你的朋友在虚拟世界里看到的只是一个冷冰冰的卡通头像(Avatar),根本看不到你真实的等表情。这就像隔着墙和人聊天,失去了面对面交流的丰富性,社交体验大打折扣。来猜出整个表情。**核心创新点:**别人做表情识别,要么需要看全脸,要么需要加装一堆奇怪的传感器。而该论文的方法,,就能实现不错的表情识别效果,而且还做了一个很巧妙的‘个性化’功能来让它更准。
2025-09-25 10:24:47
1024
原创 SNN论文阅读——Human-Inspired Computing for Robust and Efficient Audio-Visual Speech Recognition
脑启发的视听语音识别
2025-09-19 21:06:29
439
原创 SNN论文阅读——Towards spike-based machine intelligence with neuromorphic computing(Nature 综述)
SNN Nature综述阅读
2025-09-09 19:31:41
290
原创 Context-Engineering学习笔记——foundation
原子 ——对 LLM 来说是一个独立的指令。局限:输出随机性,模型难以保持一致上下文标记和输出质量之间存在幂律关系:**分子:**将指令与示例、附加上下文和结构化格式相结合的多部分提示。使用原子提示的一些模板:molecules_context分子方法利用了 LLM 的强大功能: 小样本学习 。分子方法通常具有更高的准确性和一致性,更好的遵守格式常见模板:选择示例时的一些原则:**收益递减:**每个示例都会消耗token,但是额外加入示例产生的改进幅度却越来越
2025-09-05 11:49:30
651
原创 机器学习——附录与补充
简单来说,min-max 是一种“你最小化我的最大化”的博弈策略问题。minx∈Xmaxy∈Yfxyx∈Xminy∈Ymaxfxy意思是:“我想选择一个xxx,让无论yyy怎么挑使得fxyf(x, y)fxy最大,它的值也尽量小。这个问题也叫鞍点问题对抗优化问题机器学习(对抗样本、GAN)博弈论(零和博弈)强化学习(最大最小价值)网络安全(最坏情况分析)
2025-08-20 15:16:48
770
原创 pytorch学习小记
不需要损失函数也可以计算梯度,只要最终计算的是一个标量(scalar)。标量可以直接,但向量或矩阵必须提供gradient参数。梯度默认会累加,如果不想累加,需要手动清零或。以下是一个将 CSV 文件 作为数据源,并通过自定义 Dataset 和 DataLoader 读取数据。
2025-07-10 16:36:48
942
原创 机器学习13——支持向量机下
当数据在原始空间线性不可分时,通过**核技巧(Kernel Trick)**将数据映射到高维特征空间,使其在该空间中线性可分。但是我们其实并不需要找到这个映射函数,然后将样本映射到高维空间后做内积!直接计算高维空间的内积,避免显式映射。
2025-07-10 16:20:02
1020
原创 机器学习12——支持向量机中
目标是:minw,b12∥w∥2\min_{\mathbf{w}, b} \quad \frac{1}{2} \|\mathbf{w}\|^2w,bmin21∥w∥2约束条件:yi(wTxi+b)≥1,∀i=1,…,ly_i(\mathbf{w}^T \mathbf{x}_i + b) \geq 1, \quad \forall i = 1, \dots, lyi(wTxi+b)≥1,∀i=1,…,l这是一个典型的带有不等式约束的优化问题,我们引入拉格朗日函数:定义拉格朗日函数(La
2025-07-10 16:18:39
962
1
原创 机器学习11——支持向量机上
学习机器的任务是学习输入xixi到输出yiy_iyi的映射关系:xi⟶yixi⟶yi我们假设有一个函数模型yfxαyfxαx\mathbf{x}x:输入特征向量fff:模型结构(如线性函数、神经网络、SVM 等)αα:模型参数(如权重、偏置、核参数等)学习本质:通过调整αα参数,使得fxαfxα更好地逼近真实标签yyy。
2025-07-10 16:11:03
986
原创 机器学10——集成学习
适合高方差模型;有效提升鲁棒性与泛化能力;不能明显减少偏差。提出者:Yoav Freund 与 Robert Schapire 在 1995 年 EuroCOLT 会议中提出;核心思想:将多个“弱分类器”(性能略好于随机)组合成一个“强分类器”(准确率接近完美);
2025-07-10 16:08:15
828
原创 机器学习9——决策树
ID3 需要评估每个属性的信息增益。基尼指数衡量数据集的不纯度GiniS1−∑j1kPj2GiniS1−j1∑kPj2PjP_jPj是类别jjj在数据集SSS中的比例。基尼增益ΔGiniGiniS−∣SL∣∣S∣GiniSL∣SR∣∣S∣GiniSRΔGiniGiniS−∣S∣∣SL∣GiniSL∣S∣∣SR∣Gini。
2025-06-29 22:52:56
1160
原创 机器学习8——神经网络下
通过误差反向传播来更新各层权重,从而逐步减少预测误差。输入信号流过网络,产生输出输出与期望结果对比,计算误差将误差从输出层反向传播至隐藏层基于误差更新权重,减少误差单次样本误差函数(instantaneous error):En12∑j∈Cdjn−yjn2En21j∈C∑djn−yjn2平均误差(用于 batch 模式):Eav1N∑n1NEnEavN1n1∑N。
2025-06-29 22:50:04
1228
原创 机器学习7——神经网络上
人工神经网络(Artificial Neural Network,ANN)是一种计算模型,灵感来源于生物神经系统,特别是人脑的工作方式。其核心思想:两个关键特点:每个输入 xjx_jxj 通过一个连接权重 wjw_jwj 与神经元连接:u=∑j=1mwjxju = \sum_{j=1}^{m} w_j x_ju=j=1∑mwjxj这里 uuu 是输入的加权和。偏置 bbb 是一个外部常量项,相当于控制“阈值”:v=u+bv = u + bv=u+b可以看作是加了一个固定值的输入,常
2025-06-29 22:43:57
1068
原创 机器学习6——线性分类函数
牛顿法的下降方向更陡,是因为它不仅利用了梯度的方向,还根据 Hessian(即二阶导数信息)自适应地调整了步长和方向,使下降速度沿着最快变小的路径。我们对上面的展开式求导,令导数为 0(为什么?为什么一维只展开一阶项,多维要展开到二阶项?PPT 上给出了缩小解空间的一种方式:引入“边界”(margin),要求。所以牛顿法每次直接跳到局部抛物线的最低点方向,而不是慢慢沿斜坡滑。不仅看梯度,还用 Hessian(H)矩阵调整方向和步幅。(极小值或极大值)。只用一阶导数,沿着负梯度走,小步慢慢试探。
2025-06-27 21:46:47
842
原创 机器学习5——非参数估计
首先考虑最简单的情况,样本x是一维的,那么我们将x的取值范围分成k个等间隔的区间,统计每个区间内样本的个数,由此计算每个区间的概率密度。所以,随着样本数的增加,区域的体积应该尽可能小,同时又必须保证区域内有充分多的样本,但是每个区域的样本数有必须是总样本数的很小的一部分。的增加而减小,但减小的速度不会太快,以保证每个窗口中仍然有足够的样本数量,避免估计的噪声太大。可以注意到,小区间的大小选择与估计的效果是密切相连的。是一个pdf函数吗?是概率,再除以体积得到的是概率密度)估计方法,是直方图法的数学基础。
2025-06-27 21:45:07
1129
原创 机器学习4——参数估计之贝叶斯估计
所以我们要“反过来推”,从数据出发,倒推出这个参数。这就是最大似然的直觉: “哪个参数让我们实际观测到的数据。我们在每个类别内部进行建模的时候,类别标签已经是已知的固定量。假设我们要预测某人是否患病(1 or 0),你用逻辑回归来建模,参数是。所以 MLE 可以被看作一种“没有先验信息时的贝叶斯估计”。这就是贝叶斯方法“把模型参数的不确定性也考虑进来”的精髓。我们应该考虑所有可能的参数值,不要只依赖一个点估计!:参数的后验分布,需通过训练数据计算。是哪一类的,我们已经隐含地知道了类别标签。
2025-06-27 21:43:07
1147
原创 机器学习3——参数估计之极大似然估计
我们观察到了数据,就用它来找出"最有可能"生成这些数据的参数值。也就是说,找到让观测数据“最可能”出现的参数值。"参数不是一个确定值,而是一个不确定的分布。看到数据后,我只是更新了我对它的信念。前两个是常数项,不影响优化,目标函数实质上是最小化平方误差项。类似前页的协方差,需要进行修正才能成为无偏估计。"先有参数,再有数据;现在有了数据,反推参数。代入高斯密度函数后,乘积项包含了指数和常数项。方差的最大似然估计存在偏差,其期望为。的概率分布中独立同分布采样得到的。方差的估计偏差是一个经典的证明。
2025-06-27 21:41:48
1040
原创 机器学习2——贝叶斯理论下
我们使用高斯分布建模每个类别的特征分布。高斯分布不仅仅是由“均值”控制位置,还由“协方差矩阵”控制形状和方向。P(x∣ωi)=N(μi,Σi)P\left(\mathbf{x} \mid \omega_i\right)=\mathcal{N}\left(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i\right)P(x∣ωi)=N(μi,Σi)其中 Σi\boldsymbol{\Sigma}_iΣi 表示该类别在每个维度上的扩展程度(方差),以及不同维度间的相
2025-06-27 21:39:26
744
原创 机器学习1——贝叶斯理论上
事件越不可预测(概率越低),其发生时提供的信息量应越大。均匀分布时熵最大(不确定性最高),确定分布时熵最小(零)。在某些情况下,我们不仅关心分类是否正确,还关心错误的代价。为此,我们引入损失函数。如果苹果的表面通常是光滑的,而橘子的表面通常是粗糙的,则。,即在给定观测值 x 的情况下,尽可能做出正确的分类决策。,当我们观察到数据 x 时,我们希望选择最可能的类别。:在已知 B 发生的情况下,事件 A 发生的概率(,即根据观察到的证据,反向推测某个假设的可能性。:在 A 发生的情况下,事件 B 发生的概率(
2025-06-27 21:29:43
1505
2
原创 项目实训技术实现——横向对比最近的CVPR论文成果:Paper2Poster
维度他人实现 tree_split_layout.py我们实现 Probabilistic_layout.py布局阶段是否知道内容?❌ 不知道内容长度✅ 通过 log(text_len+1)、log(fig_area+1) 预先感知空间分配是否匹配内容量?❌ 仅按启发式 sp 拆分,不考虑实际需求✅ 学习式 sp 预测,完全受控于内容体积是否可能在渲染阶段撑破?✅ 常见问题❌ 几乎杜绝,除非模型极度异常是否需要后处理修复?✅ 需要 deoverflow、VLM 检测、文本缩写。
2025-06-16 01:20:14
848
原创 项目实训技术实现——启动优化挑战:从8分钟到秒级的“三板斧”
这次性能优化之旅是一次经典的调试探案过程。日志是你的眼睛:仔细观察日志中的每一条警告和信息,它们往往隐藏着问题的真相。理解工具的原理:知道pip install背后发生的事情(下载、缓存、编译)远比只知道如何使用它更重要。从网络到磁盘,再到CPU/GPU:性能瓶颈的排查通常遵循这个路径。先解决网络下载问题,再解决本地IO(缓存),最后解决计算(编译)问题。通过这“三板斧”,我们不仅解决了项目的执行速度问题,也为未来所有基于PyTorch和Hugging Face生态的项目积累了一套宝贵的“最佳实践”
2025-06-16 01:16:54
845
原创 项目实训技术实现——核心关键:基于二叉分割的布局生成算法
至此,我们完成了从“设计稿(XML)”到“可学习数据”的关键转换。本篇所介绍的两个函数,通过忠实地加载原始数据,并施以一套为树模型量身定做的特征工程,成功地将论文中抽象的数学定义,转化为了具体的、可用于训练的数值向量。我们现在拥有了一份宝贵的“设计图谱”:它记录了对于各种内容组合,人类设计师是如何分配版面和决定形状的。面板属性推断。我将深入讲解,代码是如何使用LightGBM模型来学习这份图谱的,这与论文中提出的贝叶斯网络方法有何不同,以及为何做出这样的选择。好的,我们继续这篇客观、深入的技术博客。
2025-06-16 01:15:54
781
原创 项目实训技术实现——`Muti.py` 的脱胎换骨:从文本抓取到文档智能的架构演进
在软件项目的生命周期中,有些时刻是微小的增量改进,而另一些时刻则是彻底的革命。我们的 脚本所经历的演进,正属于后者。这个项目最初是一个巧妙但脆弱的PDF信息提取器,如今,它已重生为一个健壮、智能的文档处理引擎。这次转变由一个关键的架构决策驱动:告别使用 直接进行文本抓取的旧世界,全面拥抱由 提供的、AI驱动的结构化文档理解新范式。本文将作为一次深入探索,通过并排对比新旧代码,深度剖析这次升级。我们的目的不仅是展示改了什么,更是要揭示为何这次演进对项目的成功至关重要。这是所有后续改进的基石。旧架构的根本
2025-06-08 18:35:30
172
原创 项目实训技术实现——智能提取器的解剖学——深入探究如何利用Docling将论文图表与文本上下文精确关联
是一个开源、模块化、高保真的文档转换工具包,旨在将非结构化文档(如 PDF、图像、HTML 等)准确、高效地转换为结构化格式(如 JSON、、HTML)。它专为解决当前文档转换工具面临的幻觉问题、高计算开销与本地部署困难而设计,适用于检索增强生成(RAG)、信息提取、模型训练等任务。
2025-05-25 15:22:42
588
原创 山东大学软件学院——高级程序设计期末复习
不要像笔者一样,大一不好好学习考的烂,大三又在找补在Java中,这是因为余数的符号与被除数相同。静态方法中不能有this和super静态方法属于类,而不是实例,因此不能使用this和super权限修饰符只能修饰成员变量和成员方法,权限修饰符(如publicprivate接口中可以有具体的成员方法Java中只允许父类引用指向子类对象将子类对象强转为父类对象将父类对象强转为子类对象时会报错静态方法的重写和多态静态方法属于类,而不是类的实例,因此静态方法不能像实例方法那样被重写。
2025-05-21 16:58:11
780
原创 山东大学计算机图形学期末复习完结篇下——19历年题
对粗糙或低分辨率网格进行几何平滑,提升曲面连续性。:平滑顶点位置,抑制噪声,改善网格外观。对于每条边界,计算边的法向量。:任意线段裁剪于凸多边形窗口。
2025-05-20 14:51:58
1012
原创 山东大学计算机图形学期末复习完结篇上——24历年题
RcosθI1−cosθv⃗v⃗Tsinθv⃗×RcosθI1−cosθvvTsinθv×这就是从向量形式 → 矩阵形式的全过程推导。
2025-05-20 14:50:52
1213
原创 山东大学计算机图形学期末复习15——CG15
颜色缓冲区(Color Buffer):存储每个像素的颜色值。深度缓冲区(Depth Buffer):存储每个像素的深度信息,用于深度测试。模板缓冲区(Stencil Buffer):用于复杂的像素操作,如遮罩和多重渲染通道控制。累积缓冲区(Accumulation Buffer):用于图像的累积操作,如抗锯齿、模糊等。辅助缓冲区(Auxiliary Buffer):提供额外的渲染目标。覆盖缓冲区(Overlay Buffer):用于显示覆盖内容,如HUD界面。
2025-05-20 14:43:22
1297
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅