文章目录
一、加入课程QQ群
(一)班级QQ群
- 2023软件二班3+2:619798014
(二)入群要求
二、加入学习通班级群
(一) 学习通班级群
- 2023软件2班(3+2)48362003
(二)手势签到
三、使用思维导图
(一)安装XMind
(二) 创建思维导图做自我介绍
(三)操作要点小结
- 选择模板 .选择风格(11111)
- 添加节点
- 添加子节点:按Tab键
-添加兄弟节点:按enter键 - 删除节点:选中节点,按del键
- 给节点添加图标(任务优先级)
- 
五、创建CSDN博客
(一)选择MarkDown编辑器
- 在内容管理的博客设置里,选择默认编辑器:MarkDown编辑器
-注意,千万不要忘了单击【保存】按钮,这样才能让设置生效
(二)MarkDown基本语法
1,自动生成文章目录
- 在文章最前面添加注解:@[toc]
2,各个级别标题
: 一级标题
:二级标题
: 三级标题
注意:#打完之后必须空一格
3,让内容变红
- 用一对反单引号:``
4,文本加粗
- 用一对双星号:****
5,文本斜体
- 用一对单星号 **
5,制作表格
- 2023软件2班(3+2)
学号 | 姓名 | 性别 | 年龄 | 班级 | 手机 |
---|---|---|---|---|---|
20230301 | 李长海 | 男 | 19 | 2023软件2班 | 121212121 |
20230304 | 聂理佳 | 男 | 19 | 2023软件2班 | 121212121 |
20230302 | 杨蕊 | 男 | 19 | 2023软件2班 | 121212121 |
5,数学公式
- 勾股定理: a 2 + b 2 = c 2 a^2+b^2=c^2 a2+b2=c2
- 一元二次方程:
a
x
2
+
b
x
+
c
=
0
(
a
≠
0
)
ax^2+bx+c=0\quad(a\ne0)
ax2+bx+c=0(a=0)
\ne: not equal
- 求根公式
- x 1 = − b + b 2 − 4 a c 2 a x_1=\displaystyle\frac{-b+\sqrt{b^2-4ac}}{2a} x1=2a−b+b2−4ac
- x 2 = − b − b 2 − 4 a c 2 a x_2=\displaystyle\frac{-b-\sqrt{b^2-4ac}}{2a} x2=2a−b−b2−4ac
- x = − b ± b 2 − 4 a c 2 a x=\displaystyle\frac{-b\pm\sqrt{b^2-4ac}}{2a} x=2a−b±b2−4ac
- x = − b ∓ b 2 − 4 a c 2 a x=\displaystyle\frac{-b\mp\sqrt{b^2-4ac}}{2a} x=2a−b∓b2−4ac
- 不等式
-
x
+
4
>
6
x+4\gt6
x+4>6
\gt. greater than
-
3
+
2
x
<
6
3+2x\lt6
3+2x<6
\It: less than
-
x
+
4
≥
6
x+4\ge6
x+4≥6
ge: greater than or equal to
-
3
+
2
x
≤
6
3+2x\le6
3+2x≤6
\It: less than or equal to
6,不定积分
(1)公式
- ∫ f ( x ) d x = F ( x ) + C , F ‘ ( x ) = f ( x ) \displaystyle \int f(x)dx=F(x)+C,F`(x)=f(x) ∫f(x)dx=F(x)+C,F‘(x)=f(x)
(2)实例
- 求 f ( x ) = x 2 − 3 x + 2 f(x)=x^2-3x+2 f(x)=x2−3x+2的不定积分
- ∫ f ( x ) d x = ∫ ( x 2 − 3 x + 2 ) d x = x 3 3 − 3 x 2 2 + 2 x + C \displaystyle \int f(x)dx=\int(x^2-3x+2)dx=\frac{x^3}{3}-\frac{3x^2}{2}+2x+C ∫f(x)dx=∫(x2−3x+2)dx=3x3−23x2+2x+C
7,定积分
(1)公式
-
∫
a
b
f
(
x
)
d
x
=
F
(
x
)
∣
b
a
=
F
(
b
)
−
F
(
a
)
\displaystyle \int_a^bf(x)dx=F(x)\Bigg|{b\atop a}= F(b)-F(a)
∫abf(x)dx=F(x)
ab=F(b)−F(a)
(二) 示例
- 求 f ( x ) = x 2 − 3 x + 2 f(x)=x^2-3x+2 f(x)=x2−3x+2在区间 [ 1 , 2 ] [1,2] [1,2]上的定积分
- ∫ 1 2 f ( x ) d x = ∫ 1 2 ( x 2 − 3 x + 2 ) d x = ( x 3 3 − 3 x 2 2 + 2 x ) ∣ 2 1 = ( 8 3 − 6 + 4 ) − ( 1 3 − 3 2 + 2 ) = 2 3 − 5 6 = − 1 6 \displaystyle \int_1^2f(x)dx=\int_1^2(x^2-3x+2)dx=\left(\frac{x^3}{3}-\frac{3x^2}{2}+2x\right)\Bigg|{2 \atop 1}=\left(\frac{8}{3}-6+4\right)-\left(\frac{1}{3}-\frac{3}{2}+2\right)=\frac{2}{3}-\frac{5}{6}=-\frac{1}{6} ∫12f(x)dx=∫12(x2−3x+2)dx=(3x3−23x2+2x) 12=(38−6+4)−(31−23+2)=32−65=−61