🌟个人主页:落叶
🌟当前专栏: C++专栏
目录
⼆叉搜索树的概念
⼆叉搜索树⼜称⼆叉排序树,它或者是⼀棵空树,或者是具有以下性质的⼆叉树:
- 若它的左⼦树不为空,则左⼦树上所有结点的值都⼩于等于根结点的值
- 若它的右⼦树不为空,则右⼦树上所有结点的值都⼤于等于根结点的值
- 它的左右⼦树也分别为⼆叉搜索树
- ⼆叉搜索树中可以⽀持插⼊相等的值,也可以不⽀持插⼊相等的值,具体看使⽤场景定义,后续我 们学习map/set/multimap/multiset系列容器底层就是⼆叉搜索树,其中map/set不⽀持插⼊相等 值,multimap/multiset⽀持插⼊相等值
⼆叉搜索树的性能分析
最优情况下,⼆叉搜索树为完全⼆叉树(或者接近完全⼆叉树),其⾼度为: O(log2 N)
所以综合⽽⾔⼆叉搜索树增删查改时间复杂度为: O(N)
那么这样的效率显然是⽆法满⾜我们需求的,我们后续课程需要继续讲解⼆叉搜索树的变形,平衡⼆ 叉搜索树AVL树和红⿊树,才能适⽤于我们在内存中存储和搜索数据。
另外需要说明的是,⼆分查找也可以实现 O(logN) 级别的查找效率,但是⼆分查找有两⼤缺陷:
- 需要存储在⽀持下标随机访问的结构中,并且有序。
- 插⼊和删除数据效率很低,因为存储在下标随机访问的结构中,插⼊和删除数据⼀般需要挪动数 据。
这⾥也就体现出了平衡⼆叉搜索树的价值。
⼆叉搜索树的插⼊
插⼊的具体过程如下:
- 树为空,则直接新增结点,赋值给root指针
- 树不空,按⼆叉搜索树性质,插⼊值⽐当前结点⼤往右⾛,插⼊值⽐当前结点⼩往左⾛,找到空位 置,插⼊新结点。
- 如果⽀持插⼊相等的值,插⼊值跟当前结点相等的值可以往右⾛,也可以往左⾛,找到空位置,插 ⼊新结点。(要注意的是要保持逻辑⼀致性,插⼊相等的值不要⼀会往右⾛,⼀会往左⾛)
int a[] = {8, 3, 1, 10, 6, 4, 7, 14, 13};
下面我们可以看到,要插入一个16节点,比8大往右边走,比10大往右走,比14大往右走,走到空了就可以插入16这个节点了。
下面我们要插入3这个节点,比8小往左边走, 如果和3允许冗余的情况下往后大的走。
当cur循环到空时候,就在这个位置插入3这个节点,还需要parent记录上一个节点,用来和3节点进行连接。
接下来创建节点,构造用于申请新节点后初始化
//定义根节点赋值为空
第一步:判断根节点是不是空,是空把节点给根节点。
第二步:循环等于空就停下来,key小于当前节点往左边走,大于就往右走。
第三步:new一块新节点数值是key的,key和parent比较,parent就是记录上一个节点,小于和左边连接,大于和右边连接。
//节点
template<class K>
struct BS_Node
{
K _key;
BS_Node<K>* _left;//左
BS_Node<K>* _right;//右
//构造-用于申请新节点后初始化
BS_Node(const K& key)
:_key(key)
,_left(nullptr)
,_right(nullptr)
{}
};
template<class K>
class BStree
{
typedef BS_Node<K> Node;
public:
//插入
bool insert(const K& key)
{
//根节点为空
if (_root == nullptr)
{
//当前就给根节点
_root = new Node(key);
}
//parent用于记录上一个节点,用来和新节点连接
Node* parent = nullptr;
Node* cur = _root;
//循环到cur为空,就停下来
while (cur != nullptr)
{
//key小于当前节点往左边走
if (key < cur->_key)
{
//记录上一个节点
parent = cur;
cur = cur->_left;
}
//key大于当前节点往右边走
else if(key > cur->_key)
{
//记录上一个节点
parent = cur;
cur = cur->_right;
}
else
{
return true;
}
}
//new一块新节点给cur
cur = new Node(key);
if (key < parent->_key)
{
//小于,和左边连接
parent->_left = cur;
}
else
{
//大于,和右边连接