动态规划-最长上升子序列(LIS)

时间复杂度为〇(nlogn)的算法,下面就来看看。

我们再举一个例子:有以下序列A[]=3 1 2 6 4 5 10 7,求LIS长度。

我们定义一个B[i]来储存可能的排序序列,len为LIS长度。我们依次把A[i]有序地放进B[i]里。(为了方便,i的范围就从1~n表示第i个数)

A[1]=3,把3放进B[1],此时B[1]=3,此时len=1,最小末尾是3

A[2]=1,因为1比3小,所以可以把B[1]中的3替换为1,此时B[1]=1,此时len=1,最小末尾是1

A[3]=2,2大于1,就把2放进B[2]=2,此时B[]={1,2},len=2

同理,A[4]=6,把6放进B[3]=6,B[]={1,2,6},len=3

A[5]=4,4在2和6之间,比6小,可以把B[3]替换为4,B[]={1,2,4},len=3

A[6]=5,B[4]=5,B[]={1,2,4,5},len=4 

A[7]=10,B[5]=10,B[]={1,2,4,5,10},len=5

A[8]=7,7在5和10之间,比10小,可以把B[5]替换为7,B[]={1,2,4,5,7},len=5

最终我们得出LIS长度为5。但是,但是!!这里的1 2 4 5 7很明显并不是正确的最长上升子序列。是的,B序列并不表示最长上升子序列,它只表示相应最长子序列长度的排好序的最小序列。这有什么用呢?我们最后一步7替换10并没有增加最长子序列的长度,而这一步的意义,在于记录最小序列,代表了一种“最可能性”。假如后面还有两个数据8和9,那么B[6]将更新为8,B[7]将更新为9,len就变为7

lower_bound(a,a+n,i)函数 返回从数组a到a+n中第一个>=i的元素地址

upper_bound(a,a+n,i)函数 返回从数组a到a+n中第一个>i的元素地址

#include<cstdio>
#include<algorithm>
using namespace std;
const int MAXN=200001;
int a[MAXN];
int d[MAXN];
int main()
{
    int n;
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
        scanf("%d",&a[i]);
    d[1]=a[1];
    int len=1;
    for(int i=2;i<=n;i++)
    {
        if(a[i]>d[len])
            d[++len]=a[i];
        else
        {
            int j=lower_bound(d+1,d+len+1,a[i])-d;
            d[j]=a[i];
        }
    }
    printf("%d\n",len);    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值