- 博客(2)
- 收藏
- 关注
原创 【Intel校企合作课程】淡水预测
gamma=0,nthread=4,alpha=4,seed=27)在研究中,我们根据数据集相关性进行特征筛选,以优化模型的拟合能力。通过处理数据集的缺失值、重复值和偏差值,数据变得更有效,有助于模型构建。我们采用了XGBoost进行模型训练,并借助随机网格搜索进行优化。在对测试集进行预测后,我们获得了76%的F1分数,预测时间约为0.25秒。尽管XGBoost在训练阶段耗时较长,但通过oneAPI提供的daal4py模型加速,推理速度显著提升。
2024-03-10 14:50:56 795 1
原创 Inter校企合作 猫狗大战
在这个项目中,你将面临着一个经典的机器学习项目——猫狗挑战,你的任务是需要建立一个模型,能够准确识别图像类别是猫还是狗。在猫狗大战图像分类任务中,进行了以下步骤:数据预处理:对猫和狗的图像进行划分,分为训练集、验证集和测试集。自定义数据集类:创建SelfDataset类,进行数据增强,如随机裁剪和水平翻转,以提升模型泛化能力。选择模型:采用VGG-16架构,通过迁移学习调整分类层为2类,并使用GPU进行训练。优化训练:使用Adam优化器和交叉熵损失函数,结合学习率调度器。
2024-01-19 15:23:46 1015 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人