数字图像处理第四章——频率与滤波

一、背景

傅里叶级数:任何周期函数都可以表示为不同频率的正弦和/或余弦之和的形式,每个正弦项和/或余弦项乘以不同的系数。

傅里叶变换:非周期函数(但该曲线下的面积是有限的)也可以用正弦和/或余弦乘以加权函数的积分来表示。

二、基本概念

1、复数

复数C

C=R+jI 

( R和Ⅰ是实数,j=\sqrt{-1} )。

复数C的共轭C^{*}

C^{*}=R-jI

极坐标下:

C=\left | C \right |\left ( \cos \theta +j \sin \theta \right )  ( \left | C \right |=\sqrt{R^{2}+I^{2}} ).

欧拉公式:

e^{j\theta }=\cos\theta +j\sin\theta

2、傅里叶级数

f(t)=\sum_{n=-\infty }^{\infty}c_{n}e^{j\frac{2\pi n}{T}t} 

其中:c_{n}=\frac{1}{T}\int_{-T/2}^{T/2}f(t)e^{-j\frac{2\pi n}{T}t}dt,n=0,\pm 1,\pm 2,...是系数 

3、冲激及其取样特性

连续变量t在t =0处的单位冲激表示为\delta (t)

\delta (t)=\left\{\begin{matrix} \infty , &t=0 \\0, &t\neq 0 \end{matrix}\right.

它还被限制为满足等式

\int_{-\infty }^{\infty }\delta (t)dt=1

物理上,如果我们把t解释为时间,那么一个冲激可看成是幅度无限、持续时间为0、具有单位面积的尖峰信号。一个冲激具有关于如下积分的所谓取样( sifting)特性:

\int_{-\infty }^{\infty }f(t)\delta (t)dt=f(0)

的取样特性的一种更为一般的说明涉及位于任意点t的冲激,表示为\delta (t-t_{0})。在这种情况下,取样特性变为

\int_{-\infty }^{\infty }f(t)\delta (t-t_{0})dt=f(t_{0})

令x表示一个离散变量。单位离散冲激8(x)在离散系统中的作用与处理连续变量时冲激8(t)的作用相同。与其连续形式不同的是,离散冲激是一个普通函数。

冲激串s_{\Delta T}(t),它定义为无限多个分离的周期冲激单元\Delta T之和:
 

s_{\Delta T}(t)=\sum_{n=-\infty }^{\infty }\delta (t-n\Delta T )

冲激可以是连续的或离散的。

4、连续变量函数的傅里叶变换

\Im \left \{ f(t) \right \}表示的连续变量t的连续函数f(t)的傅里叶变换由下式定义:

\Im \left \{ f(t) \right \}=\int_{-\infty }^{\infty }f(t)e^{-j2\pi \mu t}dt

傅里叶变换对:

F(\mu )=\int_{-\infty }^{\infty }f(t)e^{-j2\pi \mu t}dt

f(t )=\int_{-\infty }^{\infty }F(\mu )e^{j2\pi \mu t}du

用欧拉公式;

F(\mu )=\int_{-\infty }^{\infty }f(t)[\cos(2\pi \mu t)-j\sin(2\pi \mu t)]dt

5、卷积

f(t)★h(t)和 H(u)F(u)是傅里叶变换对,卷积定理:

三、取样和取样函数的傅里叶变换

1、取样

模拟取样的一种方法是用一个AT单位间隔的冲激串作为取样函数去乘以f(t),即

2、取样函数的傅里叶变换

F(u)和S(u)的卷积:

 3、取样定理

如果以超过函数最高频率的两倍的取样率来获得样本,连续的带限函数可以完全地从它的样本集来恢复。一个连续的带限函数用取样率大于函数最高频率的两倍的取样来表示不会有信息损失。
 

4、混淆

由函数欠取样导致的被来自邻近周期的频率破坏这种效果就是周知的频率混淆,或简称为混淆。

5、由取样后的数据重建(复原)函数

完美重建的函数是用取样值加权的sinc函数的无限和,并且有重要的特性,即重建的函数恒等于在多个△T的整数增量处的样本值。

四、单变量的离散傅里叶变换(DFT)

1、由取样后的函数的连续变换得到DFT

离散傅里叶变换

傅里叶反变换(IDFT)

 2、取样和频率间隔间的关系

 五、两个变量的函数的扩展

1、二维冲激及其取样特性

两个连续变量t和z的冲激\delta (t,z)

二维冲激在积分下呈现了取样特性:

 更一般地,对位于坐标(t_{0},z_{0})处的冲激,有

取样特性在冲激所在的位置产生函数f(t,z)的值。

2、二维连续傅里叶变换对

3、二维取样和二维取样定理

二维取样可用取样函数(二维冲激串)建模:

4、图像中的混淆

一维混淆

图像内插和重取样

莫尔(波纹)模式

5、二维离散傅里叶变换及其反变换

二维傅里叶变换(DFT) :

傅里叶反变换(IDFT):

六、二维离散傅里叶变换的一些性质

1、空间和频率间隔的关系

2、平移和旋转

3、周期性

4、对称性

 5、傅里叶谱和相角

傅里叶谱:

相角: 

 6、二维卷积定理

将一维的扩展至两个变量可得到下面的二维循环卷积的表达式:

七、频率域滤波基础

1、频率域的其他特性

变化最慢的频率分量(u = v=0)与图像的平均灰度成正比。当我们远离变换的原点时,低频对应于图像中变化缓慢的灰度分量(例如,图像的平滑部分)。当我们从原点移开更远一些时,较高的频率开始对应于图像中越来越快的灰度变化(例如,边缘或噪声等尖锐部分)。

2、频率域滤波基础

频率域滤波由修改一幅图像的傅里叶变换然后计算其反变换得到处理后的结果组成。若给定一幅大小为M×N的数字图像f(x, y),基本滤波公式有如下形式:

3、频率域滤波的基本步骤 

①用(-1)^{x+y}乘以输入图像f(x,y),使其原点中心化
②对步骤①的结果执行DFT,得到关于中心对称的频谱F(uv)③生成一个实的、中心对称的频域滤波器H(u,v)
④对滤波器H(u,v)、频谱F(u,v)执行阵列相乘(对应元素逐个进行相乘),形成乘积G(u,v)=H(u,v)F(u,v),其中G(m,n)=H(m,n)F(m,n)且0≤m≤M-1,0≤n≤N-1
⑤对步骤④的结果G(u,v)执行反DFT,并取其结果的实部
⑥用(-1)^{x+y}乘以步骤⑤的反DFT结果的实部,得到滤波结果g(x,y)

八、使用频率域滤波器平滑图像

低通滤波器:使频谱的低频成分通过,同时使其高频成分衰减
被低通滤波的图像比原始图像少了尖锐的细节部分(如噪声、边缘等),但突出了平滑过渡部分
对应于空间域滤波的平滑处理,如均值滤波器

1、理想低通滤波器(尖锐)

理想低通滤波器H(u,v)滤波器定义为:

假设频谱中心在(M/2,N/2)处,则任意频谱成分(u,v)到中心(原点)的距离D(u,v)定义为:

理想这一名称表明在半径为D_{0}的圆内,所有频率无衰减地通过,而在此圆之外的所有频率则完全被衰减(滤除)。

 总图像功率值P_{T}

 原点位于频谱中心处,半径为D_{0}的圆包含α%的总功率(总和取处于圆之内或边界线上的(u, v)值)。

实例: 

 结论:理想低通滤波器产生模糊和振铃现象,且模糊和振铃现象反比于截断频率(即半径D_{0})

2、巴特沃思低通滤波器(处于理想和高斯滤波器之间)

n阶巴特沃思低通滤波器定义如下:

与LPF不同,BLPF传递函数并没有在通过频率和滤除频率之间给出明显截止的尖锐的不连续性。

随着滤波器半径的增大,滤除的功率越来越少,导致的模糊也越来越减弱。

3、高斯低通滤波器(平滑)

高斯低通滤波器定义如下:

\sigma是关于中心的扩展度的度量。令\sigma =D_{0}

对于相同的截止频率,GLPF 与二阶BLPF相比,导致的平滑效果要稍微差一些。

在 GLPF 中没有振铃。
 

4、低通滤波器的应用实例:模糊、平滑等

字符识别:通过模糊图像,桥接断裂字符的裂缝
印刷和出版业:从一幅尖锐的原始图像产生平滑、柔和的外观,如人脸,减少皮肤细纹的锐化程度和小斑点
处理卫星和航空图像:尽可能模糊细节,从而保留大的可识别特征(低通滤波通过消除不重要的特征来简化感兴趣特征的分析)

九、使用频率域滤波器锐化图像

高通滤波器:使频谱的高频成分通过,同时使其低频成分衰减
被高通滤波的图像比原始图像少了灰度级的平滑过渡,但突出了边缘等细节部分
对应于空间域的锐化处理,如梯度算子、拉普拉斯算子

1、理想高通滤波器

截止频率距原点的距离为D的IHPF定义为:

2、巴特沃思高通滤波器

n阶且截止频率距原点的距离为D。的 BHPF定义为:

3、高斯高通滤波器

截止频率距原点的距离原点为D。的GHPF定义为:

4、高提升滤波和高频强调滤波

高提升滤波:

 高频强调滤波:

5、高通滤波器与低通滤波器的关系 

一个带通滤波器可以用从低通滤波器得到高通滤波器的相同的方法从带阻滤波器得到:


 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值