题目描述
你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。
给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,今晚能够偷窃到的最高金额。
示例 1:
输入:nums = [2,3,2]
输出:3
解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。
示例 2:
输入:nums = [1,2,3,1]
输出:4
解释:你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。
偷窃到的最高金额 = 1 + 3 = 4 。
示例 3:
输入:nums = [1,2,3]
输出:3
提示:
1 <= nums.length <= 100
0 <= nums[i] <= 1000
题解思路
偷盗环形的房间的最大金额,我们可以转换成偷盗或者不偷盗1号房间这两种情况最终获得的最大值
如果偷盗1号房间,则不能偷盗n号房间
如果不偷盗1号房间,那可以偷盗n号房间
我们可以将环形问题转换成线性的问题,而在198. 打家劫舍,我们已经解决过该线性问题,这里就不再赘述
题解代码
func rob(nums []int) int {
n := len(nums)
if n == 1 {
return nums[0]
}
return max(rob2(nums[1:]), rob2(nums[:n - 1]))
}
func rob2(nums []int) int {
n := len(nums)
if n == 1 {
return nums[0]
}
l, r := nums[0], max(nums[0], nums[1])
for i := 2; i < n; i++ {
l, r = r, max(l + nums[i], r)
}
return r
}