自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 llama3.2-1B 在香橙派 5 plus 使用ollama部署

从结果来看,速度也是相当不错,下载的模型应该是量化的版本,我不确定是多少位的量化,模型的大小是1.3GB,原始模型的大小是2.3GB。前段时间使用香橙派部署了llama3.2-1B的FP16的原始模型,又使用树莓派5部署了ollama去调用llama3.2-1B,发现使用ollama调用的速度很快啊,为了做一个对比测试,我在香橙派也安装了ollama去调用llama3.2-1B。步骤跟树莓派部署一样。

2024-10-17 11:06:05 860

原创 Llama 3.2 1B 大型语言模型(LLMs)在Raspberry Pi 5(树莓派 5 ) --Linux Ubuntu 上安装并运行

在本大型语言模型(LLM)和机器学习教程中,我们解释了如何在Linux Ubuntu上的Raspberry Pi 5上运行Llama 3.2 1B LLMs。我们还制作了一个关于如何在Raspberry Pi 4上运行Llama 3.2模型的教程。Raspberry Pi 5比Raspberry Pi 4快得多,因此我们建议大家使用Raspberry Pi 5。首先,我们将安装Ollama,然后我们将安装Llama 3.2模型。

2024-10-16 14:36:03 2240

原创 LLaMA 3.2 1B模型部署到RK3588香橙派5plus开发板上的完整指南

在9月25日,Meta发布了LLaMA 3.2模型,其中包括了专为边缘设备设计的1B和3B小参数模型。我选择的是RK3588芯片,使用的是香橙派5plus开发板,配备了16G的运行内存,处理速度非常快。这里需要注意的是,我最初下载错了模型,下载了base版本,导致模型无法正确回复问题。在测试时,我遇到了注意力掩码未设置的问题,这会影响模型对输入内容的理解。此外,我还发现了束搜索的问题,当设置参数为1时,启用束搜索是无效的。未来,我还计划进行8bit量化,并可能会在Bilibili上分享我的量化模型。

2024-10-12 18:37:33 3523 5

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除