python爬虫

这篇博客通过实例展示了Python数据可视化的几种方法,包括使用matplotlib和seaborn库创建散点图、折线图、网格线、子图以及颜色和大小可定制的散点图,并用bar函数绘制了柱状图。
摘要由CSDN通过智能技术生成

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

 

#散点图随机生成数据

x=np.random.rand(20)

y=np.random.rand(20)

#插入数据,设置点的形状

plt.scatter(x,y,marker='x')

plt.show()

 

#随机生成数据

x2=np.random.rand(20)

y2=np.random.rand(20)

df=pd.DataFrame({'x2':x2,'y2':y2})

#设置子图

sns.jointplot(x='x2',y='y2',data=df,kind='scatter',marker='*')#scatter表示散点图 kind表示是什么图 data=df,df内含x2,y2

plt.show()

 

# # 数据准备

# x = [2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019]

# y = [5, 3, 6, 20, 17, 16, 19, 30, 32, 35]

# # 使用 Matplotlib 画折线图

# plt.plot(x, y)

# plt.show()

# # 使用 Seaborn 画折线图

# df = pd.DataFrame({'x': x, 'y': y})

# sns.lineplot(x="x", y="y", data=df)

# plt.show()

 

import matplotlib.pyplot as plt

import numpy as np

#定义两个数组,作为x轴,y轴

xpoints=np.array([0,6])

ypoints=np.array([0,100])

plt.plot(xpoints,ypoints,'o:r')

plt.show()

#将数据放进plt 画了一张图

ypoints=np.array([1,3,4,5,8,9,6,1,3,4,5,2,4])

plt.plot(ypoints,marker="*")

plt.show()

 

ypoints=np.array([1,3,4,5,8,9,6,1,3,4,5,2,4])

plt.plot(ypoints,'o:r')

plt.show()

 

xpoints=np.array([1,3,5,7,8,10])

ypoints=np.array(xpoints*2)# [2,6,10,14,16,20]

plt.plot(xpoints,ypoints,'+:g')# +是实心圆标记 :是虚线 g是绿色

plt.show()

import numpy as np

import matplotlib.pyplot as plt

#定义数据

ypoints=np.array([1,3,9,10,20,50,70,100,110])

#数据插入到图表

#plt.plot(ypoints,'o:g') marker是点的形状 ls是线

plt.plot(ypoints,marker='o',ls=':',c='g',lw='1')#linestyle可以简写为ls color可以简写为c linewidth设置线的宽度,可简写为lw

#设置x和y的名字(默认不支持中文,要下载一个字体)

plt.xlabel('x-label')

plt.ylabel('y-label')

#设置图表的名字

plt.title('table')

plt.rcParams['xtick.direction']='in'

 

#添加网格线 方法中添加axis='x'设置纵向网格线,y为设置横向网格线 visible=False/True是否显示网格线

# which='major'表示显示主刻度 minor表示显示次刻度 both表示都显示 0 1 2这些是主刻度 0.1,0.5或者其他是次刻度

# **kwargs,可选,设置网格样式 可以是color='r' linestyle='-'(设置网格线样式) 和 linewidth=2(设置网格线线宽)

#

plt.grid()

#图表显示

plt.show()

 

import matplotlib.pyplot as plt

import numpy as np

 

#定义数据

ypoints=np.array([1,3,9,10,20,50,70,100,110])

#设置子图的位置

plt.subplot(1,2,1)

#数据插入到图表

plt.plot(ypoints,'o:g')

#设置x和y的名字(默认不支持中文,要下载一个字体)

plt.xlabel('x-label')

plt.ylabel('y-label')

#设置图表的名字

plt.title('table')

#添加网格线

plt.grid()

 

#定义数据

ypoints2=np.array([1,2,3,4,5,6,7,8,9])

#设置子图的位置

plt.subplot(1,2,2)

#数据插入到图表

plt.plot(ypoints2,'o-r')

#设置x和y的名字(默认不支持中文,要下载一个字体)

plt.xlabel('x-label')

plt.ylabel('y-label')

#设置图表的名字

plt.title('table2')

#添加网格线

plt.grid()

#一起显示

plt.show()

 

import matplotlib.pyplot as plt

import numpy as np

 

x = np.array([1,2,3,4,5,6,7,8])

y = np.array([1,4,9,16,7,11,23,19])

#设置散点图每个点的大小

sizes = np.array([20,50,100,200,500,1000,60,90])

#设置散点图每个点的颜色

colors = np.array(["red","green","black","orange","purple","beige","cyan","magenta"])

plt.subplot(1,2,1)

plt.scatter(x,y,s=sizes,c=colors)

plt.title("scatter")

 

x2 = np.random.rand(50)#生成50个随机数 随机数范围是0~1之间

y2 = np.random.rand(50)

colors2 = np.random.rand(50)

plt.subplot(1,2,2)

plt.scatter(x2,y2,c=colors2)

plt.title("scatter2")

 

plt.show()

 

import matplotlib.pyplot as plt

import numpy as np

 

# 定义数据

x=np.array(['math','english','chinese','history','physical'])

y=np.array([99,55,66,11,44])

c=np.array(["#4CAF50","red","hotpink","#556B2F"])

#设置子图

plt.subplot(1,2,1)

# 插入数据显示纵向柱形图

plt.bar(x,y,color=c,width=0.5) #设置不了高度

plt.title('score')

plt.xlabel('course')

plt.ylabel('grade')

 

#设置子图

plt.subplot(1,2,2)

# 插入数据显示纵向柱形图

plt.bar(x,y,color='b',width=0.5) #设置不了高度

plt.title('score2')

plt.xlabel('course2')

plt.ylabel('grade2')

 

plt.show()

 

'''y=np.array([35,25,25,15])

l=np.array(['basketball','football','pingpong','baseball'])

c=np.array(["#d5695d","#5d8ca8","#65a479","#a564c9"])

plt.pie(y,labels=l,colors=c,explode=(0,0.2,0,0),autopct='%.2f%%')

plt.title('hobby')

plt.savefig('123.png')

plt.show()'''

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值