在定义卷积时:
nn.Conv2d(in_channels = in_channels, out_channels = out_channels, ...)
而底层卷积权重conv.weight 的形状是:
[out_channels, in_channels, ... ]
总结:
接口顺序(in, out)是给用户看的;
内部参数顺序(out, in)是PyTorch为了计算效率、与cuDNN对齐而采用的固有格式。
在定义卷积时:
nn.Conv2d(in_channels = in_channels, out_channels = out_channels, ...)
而底层卷积权重conv.weight 的形状是:
[out_channels, in_channels, ... ]
总结:
接口顺序(in, out)是给用户看的;
内部参数顺序(out, in)是PyTorch为了计算效率、与cuDNN对齐而采用的固有格式。
您可能感兴趣的与本文相关的镜像
PyTorch 2.5
PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

被折叠的 条评论
为什么被折叠?