一、深度优先搜索(dfs)
深度优先搜索(Depth-First Search)遍历类似于树的先(根)序遍历,是树的先(根)序遍历的推广。它沿着树的深度遍历树的节点,尽可能深的搜索树的分支。当节点v的所在边都己被探寻过或者在搜寻时结点不满足条件,搜索将回溯到发现节点v的状态。整个进程反复进行直到所有节点都被访问为止。
在没有进行剪枝的情况下,dfs=暴力搜索,时间复杂度可达O(n!)或以上。
算法思想
回溯法(探索与回溯法)是一种选优搜索法,又称为试探法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的方法为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。
题目描述
按照字典序输出自然数 1 到 n 所有不重复的排列,即 n 的全排列,要求所产生的任一数字序列中不允许出现重复的数字。
输入格式
一个整数 n。
输出格式
由 1 到 n 组成的所有不重复的数字序列,每行一个序列。
每个数字保留 5 个场宽。
样例 1
样例输入 1
3
样例输出 1
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
提示
1≤n≤9。
#include<bits/stdc++.h>
using namespace std;
int n;
int arr[15], vis[15]; //arr存放结果 vis用于判断该数字是否被使用过
void dfs(int x){
if(x == n + 1){
for(int i = 1; i <= n; i++){
printf("%5d", arr[i]);
}
cout << endl;
return ; //返回上一步
}
for(int i = 1; i <= n; i++){ //遍历
if(vis[i] == 0){ //没有被使用过
vis[i] = 1;
arr[x] = i;
dfs(x + 1);
vis[i] = 0; //回溯
}
}
return ;
}
int main()
{
cin >> n;
dfs(1);
return 0;
}
二、广度优先搜索
广度优先搜索(Breadth First Search,简称BFS):同样是一种遍历搜索树或图的算法。遍历方式为选定一个节点,接着访问所有与当前节点连接的满足条件的点。接着从这些可访问点中,按照相同的遍历方式访问每个节点,直到所有节点都被访问,这与树的层次遍历相同,时间复杂度与DFS相同,与搜索树和图的节点树相关。BFS一般用于解决最短路径,最短步骤等最优问题。
题目描述
爱与愁大神买完东西后,打算坐车离开中山路。现在爱与愁大神在 x1, y1 处,车站在 x2, y2 处。现在给出一个 n × n (n ≤ 1000) 的地图,0 表示马路,1 表示店铺(不能从店铺穿过),爱与愁大神只能垂直或水平着在马路上行进。爱与愁大神为了节省时间,他要求最短到达目的地距离(每两个相邻坐标间距离为 1)。你能帮他解决吗?
输入格式
第 1 行包含一个数 n。
第 2 行到第 n+1 行:整个地图描述(0 表示马路,1 表示店铺,注意两个数之间没有空格)。
第 n+2 行:四个数 x1, y1, x2, y2。
输出格式
只有 1 行,即最短到达目的地距离。
样例 1
样例输入
3
001
101
100
1 1 3 3
样例输出 1
4
提示
对于 20% 数据,满足 1≤n≤100。
对于 100% 数据,满足 1≤n≤1000。
#include<bits/stdc++.h>
using namespace std;
const int N = 1010;
int n, a, b, c, d;
struct point{
int c, r, step; //横纵坐标 距离
};
int vis[N][N]; //用于判断是否被使用过
char ch[N][N];
int f[][4] = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}}; //四个方向的坐标变化
int bfs(point start){
queue<point> q;
q.push(start); //起点入队
vis[start.c][start.r] = 1; //标记起点
while(!q.empty()){
point front = q.front(), p; //q.front()取队首元素
q.pop(); //出队
for(int i = 0; i < 4; i++){ //遍历四个方向
p.c = front.c + f[i][0];
p.r = front.r + f[i][1];
p.step = front.step + 1; //距离+1
//判断坐标位置是否合法 该坐标是否被使用 该坐标是否为'0'
if(p.c >= 1 && p.c <= n && p.r >= 1 && p.r <= n && vis[p.c][p.r] == 0 && ch[p.c][p.r] == '0'){
q.push(p); //合法就入队
vis[p.c][p.r] = 1; //标记
}
if(p.c == c && p.r == d){ //到目的位置 输出距离
return p.step;
}
}
}
return 0;
}
int main()
{
cin >> n;
for(int i = 1; i <= n; i++){
for(int j = 1; j <= n; j++){
cin >> ch[i][j];
}
}
cin >> a >> b >> c >> d;
point s;
s.c = a; //初始化起点状态
s.r = b;
s.step = 0;
cout << bfs(s) << endl;
return 0;
}