【动态规划算法】-简单多状态题型(11-18题)

本文通过多个LeetCode题目,详细讲解了动态规划中的简单多状态类型题目,包括按摩师、打家劫舍II、删除并获得点数等,分析了状态表示、动态规划步骤和代码实现,帮助读者理解这类题目的解题思路和方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
💖作者:小树苗渴望变成参天大树🎈
🎉作者宣言:认真写好每一篇博客💤
🎊作者gitee:gitee
💞作者专栏:C语言,数据结构初阶,Linux,C++ 动态规划算法🎄
在这里插入图片描述
如 果 你 喜 欢 作 者 的 文 章 ,就 给 作 者 点 点 关 注 吧!


前言

这篇博主花了好几天讲动态规划中的简单多状态类型的题目,难度也是从低到高,理解方面和之前也有不同,我会以三步给大家讲解,**题目解析,动态规划步骤,代码实现,**来解决问题,简单多状态表明我们我们讲题目进行多状态分析,然后进行简单化,之前都是一种状态,所以相对来说好理解一些,这篇说到的题型你都理解了,就会发现简单多状态就那么回事


第十一题:面试题 17.16. 按摩师


题目解析:
在这里插入图片描述

通过题解,我们选出数组中符合规则元素和的最大值就行了。

动态规划的步骤

  1. 状态表示:经验+题目要求
    以i位置为结尾:
    f[i]表示:从起点到达i位置,选择i位置时的最大值
    g[i]表示:从起点到达i位置,不选择i位置,而是选择前面一位时的最大值

    在这里插入图片描述

我们发现此位置不像是之前只有一种状态,这题有两种状态,这就是多状态

  1. 状态转移方程:以最近的状态来算此状态。
    在这里插入图片描述

f[i]=g[i-1]+nums[i];

在这里插入图片描述

g[i]=max(f[i-1],g[i-1])

  1. 初始化:保证数组不越界,此题不需要创建虚拟节点,初始化非常简单第0个位置选还是不选的问题
    选:f[0]=nums[0],不选:g[0]=0;
  2. 填表顺序:从左往右,两表同时填写
  3. 返回值
    就是返回选的值大,还是不选的值大max(f[n-1],g[n-1])

代码实现:

class Solution {
   
public:
    int massage(vector<int>& nums) {
   
        //1.创建两个状态的dp表
        
        int n=nums.size();
        if(n==0)return 0;
        vector<int> f(n);//选
        auto g=f;//不选
        f[0]=nums[0];//初始化
        for(int i=1;i<n;i++)
        {
   
            f[i]=g[i-1]+nums[i];
            g[i]=max(g[i-1],f[i-1]);
        }
        return max(f[n-1],g[n-1]);
    }
};

运行效果:
在这里插入图片描述

这题因为有多种状态,所以我们要去分析不同状态对应的情况,经验还是适用的。,我们来看下一题


第十二题:213. 打家劫舍 II

在这里插入图片描述
这题目的动态规划的步骤和上面一题的分析几乎一模一样,但是有一点不同的就是首位相连,通道最后一个位置时,要看看第一个位置有没有偷,分类讨论,来看图解分析:
在这里插入图片描述
上面的思想就是把环形文图转换为线性问题,因为环形问题就在首位的时候有问题,我们单独分类挑出来,其余的部分就和线性问题一样了,那接下来的问题就是分析随便偷时的最大值


动态规划的步骤

  1. 状态表示
    经验+题目要求
    以i位置为结尾,偷到i位置时是的最大面额,偷到i位置右两种情况,选择偷f[i],选择不偷g[i];
  2. 状态转移方程,以最近的状态算此状态,就和上面的按摩师的分析一模一样
    在这里插入图片描述

f[i]=g[i-1]+nums[i];
g[i]=max(f[i-1],g[i-1])

  1. 初始化:保证数组不越界,此题不需要创建虚拟节点,初始化非常简单第0个位置选还是不选的问题
    选:f[0]=nums[0],不选:g[0]=0;
  2. 填表顺序:从左往右,两表同时填写
  3. 返回值
    就是返回选的值大,还是不选的值大max(f[n-1],g[n-1])

这题要把随便偷的范围包装成一个函数,来看代码实现:

class Solution {
   
public:
    int rob(vector<int>& nums) {
   
        int n=nums.size();
       return max(nums[0]+rob1(nums,2,n-2),rob1(nums,1,n-1)); 
    }

    int rob1(vector<int>&nums,int left,int right)
    {
   
        if(left>right)
            return 0;

        int n=nums.size();
        //1.创建dp表
        vector<int>f(n);
        vector<int>g(n);
        f[left]=nums[left];//初始化
        for(int i=left;i<=right;i++)
        {
   
            f[i]=g[i-1]+nums[i];
            g[i]=max(f[i-1],g[i-1]);
        }
        return max(f[right],g[right]);
    }
};

运行结果:
在这里插入图片描述


第十三题:740. 删除并获得点数

在这里插入图片描述
这个题目按照正常思路是不好做下去的,因为我们任意位置开始选数,把对应的+1和-1位置的值删除,就说明你选择了这个位置,这个数的前一个数和下一个数你都选不了,来看图解:
在这里插入图片描述
大家要是看过我的计数排序那篇博客,应该理解我说的什么意思,这个问题就转换成上题中的子问题,相邻的两个位置不能选,选择删除arr[i]位置的值,点数就加上arr[i],就相当于选择了nums[i]就等于arr[i]中的i,然后再arr中i-1位置和i+1位置的值就不能选,就相当于nums[i]-1和nums[i]+1的值被删除了。


动态规划的步骤

  1. 状态表示:经验+题目要求
    我们只要对arr数组进行操作就可以了࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

橘柚!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值