💖作者:小树苗渴望变成参天大树🎈
🎉作者宣言:认真写好每一篇博客💤
🎊作者gitee:gitee✨
💞作者专栏:C语言,数据结构初阶,Linux,C++ 动态规划算法🎄
如 果 你 喜 欢 作 者 的 文 章 ,就 给 作 者 点 点 关 注 吧!
文章目录
- 前言
- 第十一题:[面试题 17.16. 按摩师](https://leetcode.cn/problems/the-masseuse-lcci/)
- 第十二题:[213. 打家劫舍 II](https://leetcode.cn/problems/house-robber-ii/)
- 第十三题:[740. 删除并获得点数](https://leetcode.cn/problems/delete-and-earn/)
- 第十四题:[剑指 Offer II 091. 粉刷房子](https://leetcode.cn/problems/JEj789/)
- 第十五题:[309.最佳买卖股票时机含冷冻期](https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-with-cooldown/)
- 第十六题:[714. 买卖股票的最佳时机含手续费](https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-with-transaction-fee/)
- 第十七题:[123. 买卖股票的最佳时机 III](https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-iii/)
- 第十八题:[188. 买卖股票的最佳时机 IV](https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-iv/)
前言
这篇博主花了好几天讲动态规划中的简单多状态类型的题目,难度也是从低到高,理解方面和之前也有不同,我会以三步给大家讲解,**题目解析,动态规划步骤,代码实现,**来解决问题,简单多状态表明我们我们讲题目进行多状态分析,然后进行简单化,之前都是一种状态,所以相对来说好理解一些,这篇说到的题型你都理解了,就会发现简单多状态就那么回事
第十一题:面试题 17.16. 按摩师
题目解析:
通过题解,我们选出数组中符合规则元素和的最大值就行了。
动态规划的步骤
- 状态表示:经验+题目要求
以i位置为结尾:
f[i]表示:从起点到达i位置,选择i位置时的最大值
g[i]表示:从起点到达i位置,不选择i位置,而是选择前面一位时的最大值
我们发现此位置不像是之前只有一种状态,这题有两种状态,这就是多状态
- 状态转移方程:以最近的状态来算此状态。
f[i]=g[i-1]+nums[i];
g[i]=max(f[i-1],g[i-1])
- 初始化:保证数组不越界,此题不需要创建虚拟节点,初始化非常简单第0个位置选还是不选的问题
选:f[0]=nums[0],不选:g[0]=0; - 填表顺序:从左往右,两表同时填写
- 返回值
就是返回选的值大,还是不选的值大max(f[n-1],g[n-1])
代码实现:
class Solution {
public:
int massage(vector<int>& nums) {
//1.创建两个状态的dp表
int n=nums.size();
if(n==0)return 0;
vector<int> f(n);//选
auto g=f;//不选
f[0]=nums[0];//初始化
for(int i=1;i<n;i++)
{
f[i]=g[i-1]+nums[i];
g[i]=max(g[i-1],f[i-1]);
}
return max(f[n-1],g[n-1]);
}
};
运行效果:
这题因为有多种状态,所以我们要去分析不同状态对应的情况,经验还是适用的。,我们来看下一题
第十二题:213. 打家劫舍 II
这题目的动态规划的步骤和上面一题的分析几乎一模一样,但是有一点不同的就是首位相连,通道最后一个位置时,要看看第一个位置有没有偷,分类讨论,来看图解分析:
上面的思想就是把环形文图转换为线性问题,因为环形问题就在首位的时候有问题,我们单独分类挑出来,其余的部分就和线性问题一样了,那接下来的问题就是分析随便偷时的最大值
动态规划的步骤
- 状态表示
经验+题目要求
以i位置为结尾,偷到i位置时是的最大面额,偷到i位置右两种情况,选择偷f[i],选择不偷g[i]; - 状态转移方程,以最近的状态算此状态,就和上面的按摩师的分析一模一样
f[i]=g[i-1]+nums[i];
g[i]=max(f[i-1],g[i-1])
- 初始化:保证数组不越界,此题不需要创建虚拟节点,初始化非常简单第0个位置选还是不选的问题
选:f[0]=nums[0],不选:g[0]=0; - 填表顺序:从左往右,两表同时填写
- 返回值
就是返回选的值大,还是不选的值大max(f[n-1],g[n-1])
这题要把随便偷的范围包装成一个函数,来看代码实现:
class Solution {
public:
int rob(vector<int>& nums) {
int n=nums.size();
return max(nums[0]+rob1(nums,2,n-2),rob1(nums,1,n-1));
}
int rob1(vector<int>&nums,int left,int right)
{
if(left>right)
return 0;
int n=nums.size();
//1.创建dp表
vector<int>f(n);
vector<int>g(n);
f[left]=nums[left];//初始化
for(int i=left;i<=right;i++)
{
f[i]=g[i-1]+nums[i];
g[i]=max(f[i-1],g[i-1]);
}
return max(f[right],g[right]);
}
};
运行结果:
第十三题:740. 删除并获得点数
这个题目按照正常思路是不好做下去的,因为我们任意位置开始选数,把对应的+1和-1位置的值删除,就说明你选择了这个位置,这个数的前一个数和下一个数你都选不了,来看图解:
大家要是看过我的计数排序那篇博客,应该理解我说的什么意思,这个问题就转换成上题中的子问题,相邻的两个位置不能选,选择删除arr[i]位置的值,点数就加上arr[i],就相当于选择了nums[i]就等于arr[i]中的i,然后再arr中i-1位置和i+1位置的值就不能选,就相当于nums[i]-1和nums[i]+1的值被删除了。
动态规划的步骤
-
状态表示:经验+题目要求
我们只要对arr数组进行操作就可以了