目录
一、函数与极限
1.1 函数的定义
函数f 是从一个集合 D(称为定义域,D包含于实数集R)到另一个集合 Y(称为值域)的映射。对于定义域中的每一个元素 x,函数f都指定了一个唯一的元素 y 在值域中,记作,其中x叫做自变量,y叫做因变量,f叫做映射规则,f(x)表示一个函数值。
1.2 定义域?
定义域是函数中所有可能的输入值的集合。
确定定义域的方法:
-
代数方法:通过分析函数的表达式,确定哪些 xx 值使得函数有意义。例如,分母不能为零,对数函数的输入必须为正数,平方根的输入必须为非负数等。
-
图形方法:通过绘制函数的图形,观察 x 轴上的范围,确定定义域。
1.3 值域?
值域是函数中所有可能的输出值的集合。
确定值域的方法:
-
代数方法:通过分析函数的表达式,确定 f(x) 的取值范围。例如,平方函数的结果总是非负的,正弦函数的结果在 −1 和 1 之间。
-
图形方法:通过绘制函数的图形,观察 y 轴上的范围,确定值域。
以函数的图像为例,通过函数图像,能够直观的确定函数的定义域和值域。
1.4 常见函数类型
- 线性函数
- 多项式函数
- 指数函数
- 对数函数
- 三角函数
- 反三角函数
- 符号函数
1.5 函数的特性
1.5.1 有界性
有界:
一个函数 f(x) 在其定义域 D 上称为有界的,如果存在两个实数 M 和 m,使得对于定义域中的任意x,都有:m≤f(x)≤M
其中:
-
M 称为函数的上界。
-
m 称为函数的下界。
一个函数有界的充要条件:既有上界,又有下界。
分类
根据函数的有界性,可以分为以下几种情况:
-
有界函数:如果函数 f(x) 在其定义域 D 上既有上界又有下界,则称 f(x) 是有界函数。
-
无界函数:如果函数 f(x) 在其定义域 D 上没有上界或没有下界,则称 f(x) 是无界函数。
1.5.2 单调性

1.5.3 奇偶性

1.5.4 周期性
1.6 极限
1.6.1 数列极限

1.6.1.1 极限的性质

1.6.1.2 极限的判定

1.6.2 函数的极限


二、导数
2.1 导数的定义
当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作
即
求导规则
常数规则:,c是常数
幂函数规则:,其中 n 是任意实数。
常数倍规则:,其中 c 是常数。
和差规则:
乘积规则:
商规则:,其中 g(x)≠0。
链式法则(复合函数求导):
2.2 单侧导数
2.2.1 左导数
函数 f(x)在点 x=a 处的左导数定义为:,其中 h→0−表示 h 从负方向趋近于 0。
2.2.2 右导数
函数 f(x)在点 x=a处的右导数定义为:
,其中 h→0+表示 h 从正方向趋近于 0。
2.2.3 导数的存在性
函数 f(x) 在点 x=a 处的导数 f′(a)存在,当且仅当左导数和右导数都存在且相等:
2.3 导数的几何意义
2.3.1 切线

2.3.2 法线
三、不定积分
3.1 不定积分的基本公式
- 常数积分:
(其中 k 是常数)
-
幂函数积分:
(其中 n≠−1)
-
指数函数积分:
-
对数函数积分:
-
三角函数积分:
-
反三角函数积分:
3.2 不定积分的积分法
3.2.1 第一类换元积分
换元公式:
手 法:
典型例题:求
解题步骤:原式
3.2.2 第二类换元积分
被积表达式 | 换元式 | 图解 |
| ||
| ||
| |
例题:求
解题步骤:原式
分部积分法:
适用情况:
- 幂x指数函数
- 幂x对数函数(幂放后面)
- 幂x三角函数
- 幂x反三角函数(幂放后面)
特殊情况:
被积函数形如: