Flink-APl

目录

自定义Source

Tranform

map

flatMap

Fliter

KeyBy

滚动聚合算子(Rolling Aggregation)

Reduce

Split 和 Select

Connect 和 CoMap

Union

Connect 与 Union 区别


自定义Source

flink自定义source接收数据

除了以上的 source 数据来源,我们还可以自定义 source。需要做的,只是传入 一个 SourceFunction 就可以。

val stream4 = env.addSource( new MySensorSource()

具体调用如下:

//自定义SourceFuntion
class MySensorSource() extends SourceFunction[SensorReading]{
  //定义一个标识位flag,用来表示数据源是否正常运行发出数据
  var running: Boolean =true
  override def cancel(): Unit = running =false
  override def run(ctx: SourceFunction.SourceContext[SensorReading]): Unit = {
    
    //定义一个随机数发生器
    val rand = new Random()

    //随机生成一组(10个)传感器的初始温度:(id ,temp)
    var curTemp = 1.to(10).map(i => ("sensor_" + i, rand.nextDouble() * 100))
    
    //定义无线循环,不停地产生数据,除非被cancel
    while(running){
      //在上次数据基础上微调,更新温度值
      curTemp = curTemp.map(
        data => (data._1,data._2 + rand.nextGaussian())
      )
      //获取当前时间戳,加入到数据中
      val curTime = System.currentTimeMillis()
      curTemp.foreach(
        data => ctx.collect(SensorReading(data._1,curTime,data._2))
      )
      //间隔500ms
      Thread.sleep(500)
    }
  }

运行结果:

它会一直更新接收数据

Tranform

转换算子

map

val streamMap = stream.map { x => x*2 }

flatMap

flatMap 的函数签名:def flatMap[A,B](as: List[A])(f: A ⇒ List[B]): List[B]

例如: flatMap(List(1,2,3))(i ⇒ List(i,i))

结果是 List(1,1,2,2,3,3),

而 List("a b", "c d").flatMap(line ⇒ line.split(" "))

结果是 List(a, b, c, d)。

val streamFlatMap = stream.flatMap{
x => x.split(" ")
}

Fliter

val streamFilter = stream.filter{
x => x == 1
}

KeyBy

DataStream → KeyedStream:逻辑地将一个流拆分成不相交的分区,每个分 区包含具有相同 key 的元素,在内部以 hash

滚动聚合算子(Rolling Aggregation)

sum()

min()

max()

minBy()

maxBy()

Reduce

KeyedStream → DataStream:一个分组数据流的聚合操作,合并当前的元素 和上次聚合的结果,产生一个新的值,返回的流中包含每一次聚合的结果,而不是 只返回最后一次聚合的最终结果。

val stream2 = env.readTextFile("YOUR_PATH\\sensor.txt")
.map( data => {
val dataArray = data.split(",")
SensorReading(dataArray(0).trim, dataArray(1).trim.toLong,
dataArray(2).trim.toDouble)
})
.keyBy("id")
.reduce( (x, y) => SensorReading(x.id, x.timestamp + 1, y.temperature)

Split 和 Select

Split

 DataStream → SplitStream:根据某些特征把一个 DataStream 拆分成两个或者 多个 DataStream

Select

SplitStream→DataStream:从一个 SplitStream 中获取一个或者多个 DataStream。

需求:传感器数据按照温度高低(以 30 度为界),拆分成两个流

val splitStream = stream2

.split( sensorData => {

if (sensorData.temperature > 30) Seq("high") else Seq("low")
} )

val high = splitStream.select("high")

val low = splitStream.select("low")

val all = splitStream.select("high", "low")

Connect 和 CoMap

Connect 

DataStream,DataStream → ConnectedStreams:连接两个保持他们类型的数 据流,两个数据流被 Connect 之后,只是被放在了一个同一个流中,内部依然保持 各自的数据和形式不发生任何变化,两个流相互独立。

CoMap

 ConnectedStreams → DataStream:作用于 ConnectedStreams 上,功能与 map 和 flatMap 一样,对 ConnectedStreams 中的每一个 Stream 分别进行 map 和 flatMap 处理。

val warning = high.map( sensorData => (sensorData.id,
sensorData.temperature) )
val connected = warning.connect(low)

val coMap = connected.map(
warningData => (warningData._1, warningData._2, "warning"),
lowData => (lowData.id, "healthy")
)

Union

DataStream → DataStream:对两个或者两个以上的 DataStream 进行 union 操 作,产生一个包含所有 DataStream 元素的新 DataStream。 

//合并以后打印
val unionStream: DataStream[StartUpLog] = appStoreStream.union(otherStream)
unionStream.print("union:::")

Connect 与 Union 区别

1. Union 之前两个流的类型必须是一样,Connect 可以不一样,在之后的 coMap 中再去调整成为一样的。

2. Connect 只能操作两个流,Union 可以操作多个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值