一元二次方程的标准形式
一元二次方程的标准形式为:
a
x
2
+
b
x
+
c
=
0
(
a
≠
0
)
ax^{2}+bx + c = 0\ (a\neq0)
ax2+bx+c=0 (a=0)
其中,
a
a
a、
b
b
b、
c
c
c 分别是二次项系数、一次项系数和常数项。
解法步骤
1. 计算判别式 Δ \Delta Δ
判别式
Δ
\Delta
Δ 的计算公式为:
Δ
=
b
2
−
4
a
c
\Delta = b^{2}-4ac
Δ=b2−4ac
判别式
Δ
\Delta
Δ 的值决定了方程根的情况:
- 当 Δ > 0 \Delta>0 Δ>0 时,方程有两个不相等的实数根;
- 当 Δ = 0 \Delta = 0 Δ=0 时,方程有两个相等的实数根;
- 当 Δ < 0 \Delta<0 Δ<0 时,方程没有实数根,但有两个共轭复数根。
2. 根据判别式的值求解方程的根
-
当 Δ > 0 \Delta>0 Δ>0 时:
方程有两个不相等的实数根,根的计算公式为:
x 1 = − b + Δ 2 a x_{1}=\frac{-b + \sqrt{\Delta}}{2a} x1=2a−b+Δ
x 2 = − b − Δ 2 a x_{2}=\frac{-b - \sqrt{\Delta}}{2a} x2=2a−b−Δ -
当 Δ = 0 \Delta = 0 Δ=0 时:
方程有两个相等的实数根,根的计算公式为:
x 1 = x 2 = − b 2 a x_{1}=x_{2}=-\frac{b}{2a} x1=x2=−2ab -
当 Δ < 0 \Delta<0 Δ<0 时:
方程有两个共轭复数根,设 Δ = − k \Delta=-k Δ=−k( k > 0 k > 0 k>0),根的计算公式为:
x 1 = − b + i k 2 a x_{1}=\frac{-b + i\sqrt{k}}{2a} x1=2a−b+ik
x 2 = − b − i k 2 a x_{2}=\frac{-b - i\sqrt{k}}{2a} x2=2a−b−ik
其中 i i i 为虚数单位,满足 i 2 = − 1 i^{2}=-1 i2=−1。
Python 代码实现
import cmath
def solve_quadratic(a, b, c):
# 计算判别式
delta = cmath.sqrt(b**2 - 4*a*c)
# 计算两个根
x1 = (-b + delta) / (2*a)
x2 = (-b - delta) / (2*a)
return x1, x2
# 示例:求解方程 2x^2 + 3x - 5 = 0
a = 2
b = 3
c = -5
root1, root2 = solve_quadratic(a, b, c)
print(f"方程 {a}x^2 + {b}x + {c} = 0 的根为:")
print(f"x1 = {root1}")
print(f"x2 = {root2}")