一元二次方程

一元二次方程的标准形式

一元二次方程的标准形式为:
a x 2 + b x + c = 0   ( a ≠ 0 ) ax^{2}+bx + c = 0\ (a\neq0) ax2+bx+c=0 (a=0)
其中, a a a b b b c c c 分别是二次项系数、一次项系数和常数项。

解法步骤

1. 计算判别式 Δ \Delta Δ

判别式 Δ \Delta Δ 的计算公式为:
Δ = b 2 − 4 a c \Delta = b^{2}-4ac Δ=b24ac
判别式 Δ \Delta Δ 的值决定了方程根的情况:

  • Δ > 0 \Delta>0 Δ>0 时,方程有两个不相等的实数根;
  • Δ = 0 \Delta = 0 Δ=0 时,方程有两个相等的实数根;
  • Δ < 0 \Delta<0 Δ<0 时,方程没有实数根,但有两个共轭复数根。
2. 根据判别式的值求解方程的根
  • Δ > 0 \Delta>0 Δ>0
    方程有两个不相等的实数根,根的计算公式为:
    x 1 = − b + Δ 2 a x_{1}=\frac{-b + \sqrt{\Delta}}{2a} x1=2ab+Δ
    x 2 = − b − Δ 2 a x_{2}=\frac{-b - \sqrt{\Delta}}{2a} x2=2abΔ

  • Δ = 0 \Delta = 0 Δ=0
    方程有两个相等的实数根,根的计算公式为:
    x 1 = x 2 = − b 2 a x_{1}=x_{2}=-\frac{b}{2a} x1=x2=2ab

  • Δ < 0 \Delta<0 Δ<0
    方程有两个共轭复数根,设 Δ = − k \Delta=-k Δ=k k > 0 k > 0 k>0),根的计算公式为:
    x 1 = − b + i k 2 a x_{1}=\frac{-b + i\sqrt{k}}{2a} x1=2ab+ik
    x 2 = − b − i k 2 a x_{2}=\frac{-b - i\sqrt{k}}{2a} x2=2abik
    其中 i i i 为虚数单位,满足 i 2 = − 1 i^{2}=-1 i2=1

Python 代码实现

import cmath

def solve_quadratic(a, b, c):
    # 计算判别式
    delta = cmath.sqrt(b**2 - 4*a*c)
    
    # 计算两个根
    x1 = (-b + delta) / (2*a)
    x2 = (-b - delta) / (2*a)
    
    return x1, x2

# 示例:求解方程 2x^2 + 3x - 5 = 0
a = 2
b = 3
c = -5

root1, root2 = solve_quadratic(a, b, c)
print(f"方程 {a}x^2 + {b}x + {c} = 0 的根为:")
print(f"x1 = {root1}")
print(f"x2 = {root2}")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值