Anaconda
九离580
这个作者很懒,什么都没留下…
展开
-
决策树相关知识
数据不断分裂的递归过程,每一次分裂,尽可能让类别一样的数据在树的一边,当树的叶子节点的数据都是一类的时候,则停止分类。这样分类的数据,每个节点两边的数据不同,将相同的数据分类到树的一侧,能将数据分类的更纯粹。注意:训练决策树的数据集要离散化,不然有可能造成训练出来的树有些节点的分支特别多,容易造成过拟合。通过对所有分类条件计算信息增益,那么信息增益最大的那个分类条件就是最优的根节点分类条件的选择。一个合理的决策树可以描述为:决策树的高度相对低而且树的两边能将数据分类的更彻底。信息增益:代表熵的变化程度。原创 2023-04-17 12:49:34 · 223 阅读 · 0 评论 -
python面向对象
python面向对象原创 2023-03-05 23:07:05 · 200 阅读 · 0 评论 -
数据导入以及切片学习
数据导入以及切片学习原创 2023-02-27 23:10:03 · 279 阅读 · 0 评论 -
线性回归 预测Boston房价
Anaconda线性回归预测Boston房价原创 2023-02-26 18:07:28 · 428 阅读 · 1 评论 -
Anaconda导入数据
导入数据原创 2023-02-15 21:44:47 · 1357 阅读 · 0 评论 -
下载并安装Anaconda
下载网址:https://www.anaconda.com/原创 2023-02-15 21:34:58 · 358 阅读 · 0 评论