用STC-ISP烧录过程中一直显示“正在检测单片机”的解决办法

本文介绍了在单片机烧录过程中可能遇到的问题及解决办法,包括接线错误、晶振缺失、芯片类型选择不当、冷启动需求等。通过诊断这些常见问题,帮助开发者顺利完成烧录。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    有时候,在烧录过程中会遇到“正在检测单片机”的问题,就如下图所示。

   一般,有以下几种情况。

  1.接线问题

    检查一下接线是不是按照“VCC--5V;TXD--RXD;RXD--TXD;GND--GND"连接,有时候会将TXDTXD,RXD和RXD接在一起,而导致无法烧录。

  2.晶振问题

    有些开发板是没有晶振的,这时候就要检查一下晶振。晶振如下图所示。

   3.芯片类型和串口问题

    芯片要根据自己使用的芯片来选择,有些芯片选择易混淆,如把STC89C52RC选错成了STC89C52。

    串口根据下载STC-ISP说明来操作即可,一般有CH340和PL2303两种。

   4.冷启动问题

    有些单片机需要进行冷启动才能烧录成功。冷启动的方法一般有两种:第一种是看开发板上有没有开关按钮,如果有,在接线完成,并且正在检测单片机时,按下开关,过一会再按回来进行冷启动;第二种,直接拔掉插在VCC的杜邦线,再插上去,即可完成冷启动。

  5.其他问题(硬件问题)

    有可能是芯片或开发板的问题,换一个烧录试试看,如果还是正在检测,应该就不是这个问题。  也有可能是下载器的问题等等。

   

 

 

 

### 解决 PP-OCRv4 出现的错误 当遇到 `WARNING: The pretrained params backbone.blocks2.0.dw_conv.lab.scale not in model` 这样的警告时,这通常意味着预训练模型中的某些参数未能匹配到当前配置下的模型结构中[^2]。 对于此问题的一个有效解决方案是采用特定配置文件来适配预训练权重。具体操作方法如下: 通过指定配置文件 `ch_PP-OCRv4_det_student.yml` 并利用已有的最佳精度预训练模型 (`best_accuracy`) 来启动训练过程可以绕过上述不兼容的问题。执行命令如下所示: ```bash python3 tools/train.py -c configs/det/ch_PP-OCRv4/ch_PP-OCRv4_det_student.yml ``` 该方案不仅解决了参数缺失带来的警告,还能够继续基于高质量的预训练成果进行微调,从而提升最终检测效果。 关于蒸馏的概念,在机器学习领域内指的是将大型复杂网络(teacher 模型)的知识迁移到小型简单网络(student 模型)。这里 student 和 teacher 的关系是指两个不同规模或架构的神经网络之间的指导与被指导的关系;其中 teacher 已经经过充分训练并具有良好的性能,而 student 则试图模仿前者的行为模式以达到相似的效果但保持更高效的计算特性。 至于提到的 `Traceback` 错误信息部分,由于未提供具体的跟踪堆栈详情,难以给出针对性建议。不过一般而言,这类报错往往涉及代码逻辑错误或是环境配置不当等问题。为了更好地帮助定位和解决问题,推荐记录完整的异常日志,并仔细检查最近修改过的代码片段以及确认依赖库版本的一致性。
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值