- 博客(24)
- 收藏
- 关注
原创 算法设计:分治法的基础原理与应用
分治法作为一种经典的算法设计策略,在计算机科学中具有重要的地位。它通过将复杂问题分解为多个简单子问题,递归地解决子问题,并将子问题的解合并得到原问题的解,从而高效地解决许多问题。分治法适用于具有可分解性、子问题独立性、合并可行性和子问题规模缩小等问题。通过上述详细的应用案例,我们可以看到分治法在排序、查找、几何计算、生物信息学等领域中的广泛应用。例如,合并排序和快速排序在排序领域具有高效的性能;二分搜索在有序数组查找中提供了快速的解决方案;最近点对问题和凸壳问题的分治法算法在计算几何中具有重要的应用价值。
2025-04-30 14:40:52
929
原创 算法设计:动态规划的基础原理与应用
动态规划是一种功能强大的算法设计技术,它通过将问题分解为相互重叠的子问题,并利用最优性原理,保存子问题的解以避免重复计算,从而高效地解决许多复杂的组合最优化问题。从背包问题到矩阵链相乘,从旅行商问题到 DNA 序列联配,再到树形动态规划问题,动态规划在多个领域都展现出了其独特的价值和优势。然而,动态规划并非适用于所有问题,只有满足特定条件的问题才能用动态规划求解。掌握动态规划的基本思想、适用条件和步骤,并熟悉其典型应用,对于解决实际问题中的最优化问题具有重要意义。
2025-04-30 14:24:26
781
原创 算法设计:分支限界法的基础原理与应用
分支限界法是一种专门用于求解最优化问题的算法,它与回溯法有一定相似性,但在搜索策略上存在显著差异。分支限界法通过广度优先或最小耗费优先的方式对解空间树进行搜索,同时巧妙地利用约束条件和目标函数的限界,大大减少了无效搜索的范围。其核心在于借助限界函数对候选解进行精确评估,优先扩展那些最有可能通向最优解的节点,从而提高搜索效率。分支限界法作为一种高效的最优化问题求解方法,通过精心设计限界函数和合理确定优先级策略,能够在复杂的解空间中迅速定位到问题的最优解。
2025-04-29 15:44:57
938
原创 算法设计:回溯法的基础原理与应用
回溯法作为一种极具威力的算法设计技术,在各类组合与排列问题的求解中占据着重要地位。其核心在于深度优先搜索状态空间树,并借助剪枝函数大幅减少不必要的搜索开销,显著提升算法效率。在实际应用场景中,根据问题的独特特性,合理定义解空间、准确确定约束集以及精心设计高效的剪枝策略,是充分发挥回溯法优势的关键所在。尽管在最坏情况下,回溯法的时间复杂度可能较高,但通过巧妙运用剪枝技巧,在众多实际问题中仍能获得令人满意的解决方案。
2025-04-29 15:44:31
773
原创 算法设计与分析(期末试卷)
现有某小学 n 名小学生的身高数据(无序),校长想知道身高为 x 的学生有多少名,采用线性搜索时间复杂度为 O (n),请你设计一个分治算法完成统计,并分析算法的时间复杂度,与线性搜索算法作比较。
2025-04-28 16:43:07
288
原创 流水线问题(算法设计)C++
ADT 结构体数据对象:包含多种类型数据项,如变量、数组、指针等。数据关系:数据项间存在相关性。基本操作创建:使用 typedef struct Node 创建新结构体对象。访问:通过结构体对象和成员名访问成员。赋值:将一个结构体对象赋值给当前对象。修改:修改结构体中成员的值。ADT info数据对象:信息记录,含整型成员和数组成员。数据关系:无特定关系描述。基本操作:无特定操作描述。ADT 线性表数据对象:相同数据类型数据元素的集合。数据关系:数据元素间有前驱后继关系。
2025-04-28 16:33:36
1203
原创 NumPy入门:从数组基础到数学运算
NumPy 是 Python 中用于科学计算的核心库,提供了强大的多维数组对象和丰富的工具函数。以下是 NumPy 数组的基础知识和操作详解。
2025-04-22 21:53:46
345
原创 NumPy进阶:广播机制、高级索引与通用函数详解
在第一个例子中, a 的形状为 (3,), b 的形状为 (3, 1)。通过广播, a 被扩展为 (3, 3), b 也被扩展为 (3, 3),然后进行加法运算。在第二个例子中, a 的形状为 (3,), c 的形状为 (3, 3)。其核心是当数组的形状不同时,通过特定规则扩展形状较小的数组,使其与形状较大的数组匹配进行运算。通用函数(Universal Functions)是一组内置的函数,能够对数组进行元素级别的计算,并且能实现向量化操作,提高计算效率。比较函数可以比较两个数组的元素,返回布尔数组。
2025-04-22 21:38:04
1138
原创 NumPy 核心指南:零基础入门与实践
NumPy(Numerical Python)是 Python 语言的一个扩展程序库,支持大量的多维数组及矩阵运算,此外也针对数组运算提供大量的数学函数库。
2025-04-19 14:57:52
489
原创 CiteULike 数据集介绍与下载指南
CiteULike 数据集来源于 CiteULike 网站,该网站自 2004 年 11 月起作为免费的 Web 服务提供。用户在网站上看到感兴趣的论文后,点击按钮可将指向该论文的链接添加到自己的个人图书馆中,同时 CiteULike 会自动提取引文详细信息,并存储指向论文的链接以及用户定义的一组标签。
2025-04-19 14:37:07
1006
原创 MovieLens 数据集介绍与下载指南
MovieLens 数据集在推荐系统领域极具影响力,由明尼苏达大学 GroupLens 研究小组精心收集并持续维护。该数据集整合了大量电影评分、标签及相关元数据,为推荐算法的研究与优化提供了坚实的数据基础,助力学者和开发者构建更精准的用户观影偏好推荐系统。
2025-04-18 20:11:56
1487
原创 MIND - small 数据集介绍及下载指南
MIND - small 是微软新闻推荐数据集(MIND)的一个小型子集,专为新闻推荐研究而设计。它的数据源自微软新闻网站的匿名用户行为日志,旨在推动新闻推荐算法的研究与发展,为该领域的科研工作者提供一个相对便捷且有效的数据资源。
2025-04-18 16:27:42
839
原创 (2025)IDEA 下载与安装保姆级指南
通过以上详细的步骤,你就能够顺利完成 IntelliJ IDEA 的下载和安装。对于刚接触编程的初学者,从免费的社区版开始使用是个很好的选择,等你熟悉了软件的基本功能之后,再根据自己的需求考虑是否升级到专业版。要是在安装过程中遇到任何问题,你可以参考 JetBrains 官方文档,或者到相关的社区论坛去寻求帮助。希望这份说明能帮助你顺利上手 IntelliJ IDEA!要是还有其他疑问,随时私信问哦。
2025-04-17 19:40:51
9062
原创 (2025)JDK安装与配置保姆级指南(JDK17)
JDK(Java Development Kit)是 Java 开发的核心组件,它包含了 Java 编译器(javac)、运行时环境(JRE)以及各种开发工具。JDK 是开发和运行 Java 程序的基础,它提供了编译、调试和运行 Java 代码所需的全部工具。通过 JDK,开发者可以将 Java 源代码编译成字节码,并在 Java 虚拟机(JVM)上运行。JDK 还包括丰富的类库和 API,帮助开发者高效地构建各种应用程序。对于初学者来说,JDK 是学习和开发 Java 程序的必备工具。
2025-04-17 19:25:50
4093
1
原创 python入门(三):变量常量与时间处理详解:从声明到垃圾回收
Python 变量声明与赋值简单灵活,动态类型特性赋予开发者高效编程体验。变量命名规则确保代码规范性与可读性。删除变量及垃圾回收机制保障内存合理利用。常量通过约定俗成方式定义。链式赋值和系列解包赋值提升代码简洁性。time 模块为时间处理提供全面支持,涵盖时间表示、时间点获取及微秒毫秒处理等功能。深入理解并熟练运用这些知识,能助力开发者在 Python 编程道路上稳步前行,构建更强大、高效的应用程序。
2025-04-16 16:08:05
805
原创 Conda 和 Pip 的区别:初学者必看的工具对比指南
Conda 功能更为全面,适用于管理复杂环境和多语言包的场景;Pip 作为 Python 的标准工具,适合简单 Python 项目及快速安装 Python 包。对于初学者,若主要使用 Python 开发,可先从 Pip 入手;若需管理复杂依赖或创建独立环境,则可选择 Conda。实际使用中,两者可同时使用,但要注意避免冲突,通常建议在 Conda 环境中利用 Pip 安装额外的 Python 包,以充分发挥两者优势,提升开发效率。
2025-04-16 15:50:41
966
原创 Anaconda 使用指南(指令合集)
Anaconda 无疑是一款强大的工具,对于初学者而言,它能帮助你快速搭建起 Python 数据科学项目所需的环境,大幅降低开发门槛。通过熟练掌握 Conda 的基本命令,你可以灵活地管理多个项目环境,有效避免依赖冲突,让开发过程更加高效、顺畅。在使用过程中,如果遇到任何问题,Anaconda 官方文档是一个非常好的参考资料,其中包含了详细的使用说明和常见问题解答。同时,Anaconda 的社区也十分活跃,你可以在社区中提问、交流,获取来自全球开发者的帮助和建议。
2025-04-15 21:57:49
2228
原创 Anaconda 和 Miniconda:功能详解与选择建议
Miniconda 是 Anaconda 的轻量级版本,它仅包含conda包管理器和 Python 本身,并没有像 Anaconda 那样预装 1500 多个库。这意味着用户需要根据自身实际需求手动安装所需的包,给予了用户更大的自主控制权。如果你是刚刚踏入数据科学领域的初学者,或是一名需要快速搭建环境开展工作的数据科学家,亦或是在团队协作、教学等场景中,Anaconda 会是一个非常不错的选择。它提供的完整工具链和大量预装库,能让你迅速上手工作,减少环境搭建带来的困扰。
2025-04-15 21:42:31
1825
原创 Python入门(二):核心概念与编程基础
Python 的入门阶段重点涵盖基本语法、数据类型、控制结构以及面向对象编程的基础内容。通过深入理解程序构成、代码组织方式、缩进规则、对象与引用机制、内存管理原理以及标识符命名规则等方面,你能够迅速掌握 Python 的核心概念。在学习过程中,多动手编写代码、积极实践各类示例是掌握编程技能的最佳途径,希望你能在 Python 的学习旅程中收获满满!
2025-04-14 16:48:41
849
原创 Python入门(一):新手必学的编程基础知识
x = 5 # 整数y = "Python" # 字符串z = 3.14 # 浮点数Python 是一门非常适合初学者的编程语言,其语法简洁、易读,便于快速入门。Python 的基本概念(变量、数据类型、运算符)缩进和注释的运用运行 Python 代码的方法打印文本计算数学表达式获取用户输入并输出结果希望这些内容能助力你顺利开启 Python 的学习之旅!若有任何疑问,欢迎随时私信问我。
2025-04-14 16:29:39
981
原创 稀疏矩阵:从理论到实践的详细教程
稀疏矩阵是一个在大规模数据处理领域极为重要的概念。在许多实际应用场景中,数据往往以矩阵形式呈现,而其中大量的零元素使得普通矩阵的存储和计算效率低下。本文将以简单易懂的方式,深入讲解稀疏矩阵的相关知识,并通过代码示例帮助大家更好地理解。矩阵是由数字按行和列排列组成的二维数组。稀疏矩阵作为一种特殊矩阵,其显著特征是大部分元素为零。与之相对的是普通矩阵,也称为密集矩阵,其中非零元素较为密集。普通矩阵示例[1, 2, 3],[4, 5, 6],[7, 8, 9]
2025-04-13 18:02:37
759
原创 惰性加载 (Dask)和立即加载 (Pandas)说明
self.user_ids = ratings['userId'].unique().compute() # 触发实际计算。result = ratings.groupby('user').mean().compute() # 触发实际计算。ratings = dd.read_csv("big_file.csv") # 此时仅创建任务计划,不读文件。ratings = pd.read_csv("small_file.csv") # 立即读取全部数据到内存。需要手动触发计算(.compute ())
2025-04-12 21:46:16
527
原创 对文本数据的关键词的提取(代码演示)
它借鉴了Google的PageRank算法思想,将文本单元视为图中的节点,通过投票机制计算重要性。算法原理:对文本数据进行预处理分词处理,构建图结构,计算迭代权重,结果的排序与提取。
2025-04-01 11:44:09
264
原创 (2025)Maven安装与配置保姆级指南
Binary版本是编译后的可执行文件,可以直接运行;而Source版本包含源代码,需要编译后才能使用。tar.gz和zip是两种不同的压缩格式,它们包含的内容相同。tar.gz文件通常更小,常用于Unix系统;zip格式则多用于Windows系统,但Windows用户可以通过WinRar等工具解压tar.gz文件。
2024-12-24 10:53:23
829
1
01WPS文字考点自查清单.pdf【WPS文字处理】2024年9月考试必备:WPS文字操作考点全面解析与应试技巧汇总了WPS
2025-04-14
【蓝桥杯竞赛】基于Scratch编程的第15届省赛真题解析:涵盖单选与编程实践题目
2025-04-14
编程竞赛2024年第十五届蓝桥省赛C++真题解析:涵盖选择题、程序设计题及算法实现记录了20
2025-04-14
人工智能.pdf【人工智能领域】2021年人工智能专家成长路线图:涵盖数据科学、机器学习与深度学习路径选择及关键技术要点综述
2025-04-14
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人