基于 MATLAB 的交通标志识别

设计和实现一个交通标志识别系统,主要包括交通标志的分类、提取、分割和识别功能。首先,我们收集并标注了包含禁止类、警示类和指示类的交通标志图片数据集,为算法训练和测试提供了高质量的数据支持。其次,系统实现了卷积神经网络(CNN) 用于分类、图像预处理和边缘检测用于标志提取、图像分割技术用于标志分割,以及深度学习模型用于标志识别。最后,通过 matlab 实现了一个用户友好的 GUI 界面,用户可以通过界面直观地完成读取图片、标志提取、分割标志和识别标志的操作。

1.实现用于训练前馈神经网络的函数

实现神经网络训练函数 BP_Prince,通过指定不同的参数可以训练不同结构和设置的神经网络模型。主要功能包括初始化网络、设置训练参数并进行训练,最后返回训练好的神经网络和训练过程中的记录。

2.实现了对交通标识图像的识别训练,使用的是基于 BP 神经网络的机器学习方法。

使用 sim 函数仿真神经网络,得到输出结果 T。

计算训练误差并绘制误差图。

打印训练误差和迭代次数。

绘制仿真数据与真实数据对比图,显示识别错误个数。

保存训练好的神经网络模型和相关数据。

实现了交通标识图像的训练和识别过程

3.读取图片

让用户选择一个图片文件(支持多种格式)。

读取所选图片的数据。

在 GUI 的四个坐标系中的其中一个坐标系上显示所选图片。

同时,还对图像进行了一些预处理,清除坐标系、设置坐标系、显示灰度图等操作。

4.标志提取

1.获取颜色标志:

根据用户选择的单选按钮来确定颜色类型。单选按钮的句柄和状态通过 handles 结构传递进来。

如果 radiobutton3 被选中,则颜色标志 Color 被设置为 1(红色)。

如果 radiobutton4 被选中,则颜色标志 Color 被设置为 2(蓝色)。

如果 radiobutton5 被选中,则颜色标志 Color 被设置为 3(黄色)。

2.根据颜色标志处理图像:

根据 Color 的值,选择对应的图像通道或灰度化处理。

使用适当的颜色阈值条件(如红色、蓝色、黄色的条件)来生成二值图像 GI,以标识出符合条件的颜色区域。

3.显示处理结果

5.分割标志

1.图像处理操作

se = ones(3); 定义了一个大小为 3x3 的全 1 结构元素,用于后续的腐蚀和膨胀操作。

d = imdilate(d, se); 对图像进行膨胀操作,增强图像中的明显特征。

2.去除小对象

d = bwareaopen(d, 100); 移除面积小于 100 像素的对象,通常这些对象被认为是噪声或不相关的区域。

3.连通区域标记

L = bwlabel(d, 8); 使用 8 连通方法标记二值图像 d 中的连通区域,每个区域被赋予一个唯一的标签。

4.计算区域属性

Num = max(max(L)); 确定图像中的连通区域总数。

S = zeros(1, Num); 初始化一个数组,用于存储每个区域的面积。

5.区域属性计算

使用循环计算每个连通区域的面积,并存储在数组 S 中。

6.区域排序

sort(S, 'descend') 对区域面积进行降序排序,并获取排序后的索引 id。

7.选择区域

根据设定的条件(在这里是长宽比),选择最合适的区域作为兴趣区域。

8.提取兴趣区域

根据选定的区域范围,在原始图像 handles.I 中提取对应区域的像素数据。

如果条件满足(例如处理黄色对象),则调整提取范围以更好地包括感兴趣的区域。

9.显示处理结果

6.识别标志

1.获取图像数据

I = handles.Divice; 从 GUI 句柄中获取图像数据,存储在变量 I 中。

2.预加载数据和模型

load Name Name;、load Trained_BP Trained_BP;、load Data Data; 分别加载标签名称、训练好的神经网络模型和数据。

3.图像预处理

如果图像不是灰度图像,则使用 rgb2gray 函数将其转换为灰度图像。

imadjust 函数用于调整图像对比度。

imresize 将图像调整为 40x40 像素。

im2bw 将处理后的图像二值化,转换为黑白图像。

4.计算欧氏距离

distance 数组存储当前图像与预先存储数据中每个数据点的欧氏距离。

5.识别部分

神经网络识别:通过预先训练的神经网络模型 Trained_BP 对距离数组 distance 进行预测,并找到最接近 1 的输出作为识别结果。

模板匹配:如果不需要神经网络识别,可以使用距离数组中最小距离对应的标签作为识别结果。

7.退出程序

禁止标志识别(红色)

警示标志识别(黄色)

指示标志识别(蓝色)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值