背包问题详细介绍

一. 01背包问题

01背包问题是经典的动态规划问题,适合用动态规划求解。问题描述为:给定一个容量为W的背包和n个物品,每个物品有重量和价值,目标是选择物品以最大化背包中的总价值,同时不超过容量W。

问题定义:

  1. 输入:
  • W:背包容量
  • weights:物品重量数组
  • values:物品价值数组
  1. 输出:
  • 最大价值总和,且装入背包的物品总重量不超过W。

动态规划思路:

  1. 状态定义:dp[i][j]表示前i个物品在容量为j时的最大价值。
  2. 状态转移:
  • 不选择第i个物品:dp[i][j] = dp[i-1][j]
  • 选择第i个物品(前提是重量不超过j):dp[i][j] = dp[i-1][j-weights[i-1]] + values[i-1]

综合:

dp[i][j] = {
  dp[i-1][j], 如果 weights[i-1] > j
  max(dp[i-1][j], dp[i-1][j-weights[i-1]] + values[i-1]), 否则
}
  1. 初始化:dp[0][j] = 0(无物品时最大价值为0),dp[i][0] = 0(容量为0时最大价值也为0)。

C++ 示例代码:

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

int knapsack(int W, const vector<int>& weights, const vector<int>& values) {
    int n = weights.size();
    vector<vector<int>> dp(n + 1, vector<int>(W + 1, 0));

    for (int i = 1; i <= n; i++) {
        for (int j = 0; j <= W; j++) {
            if (weights[i - 1] <= j) {
                dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weights[i - 1]] + values[i - 1]);
            } else {
                dp[i][j] = dp[i - 1][j];
            }
        }
    }

    return dp[n][W];
}

int main() {
    int W;
    cout << "Enter backpack capacity: ";
    cin >> W;

    int n;
    cout << "Enter number of items: ";
    cin >> n;

    vector<int> weights(n), values(n);
    
    cout << "Enter weights of items: ";
    for (int i = 0; i < n; i++) {
        cin >> weights[i];
    }

    cout << "Enter values of items: ";
    for (int i = 0; i < n; i++) {
        cin >> values[i];
    }

    int maxValue = knapsack(W, weights, values);
    cout << "Maximum value in knapsack = " << maxValue << endl;

    return 0;
}

代码解析:

  • 输入:从用户获取背包容量、物品数量及每个物品的重量和价值。
  • DP表:使用二维数组dp存储每步的最大价值。
  • 状态转移:通过嵌套循环填充dp表,判断是否选择当前物品。
  • 输出:最终输出在给定容量W的背包中可以携带的最大价值。

复杂度:

  • 时间复杂度:O(n×W),其中n为物品数量,W为背包容量。
  • 空间复杂度:O(n×W),用于存储DP表,但可以通过优化将空间复杂度降至O(W)。

优化空间:

利用滚动数组的方法,只需保留当前和上一个状态,将空间复杂度降为O(W)。

二.完全背包问题

完全背包问题(Complete Knapsack Problem)是经典的动态规划问题,定义如下:

给定n种物品,每种物品的重量为w[i],价值为v[i],每种物品可以无限次使用。在不超过最大重量W的前提下,最大化背包中物品的总价值。

问题模型:

  • 物品数量(n):每种物品的数量是无限的
  • 最大承载重量(W)
  • 物品价值(v[i])
  • 物品重量(w[i])

动态规划思路:

  • 状态定义:dp[j]表示背包容量为j时的最大价值。

  • 状态转移方程:对于每种物品,考虑将其放入背包。对于每个可能的容量j(从物品重量w[i]到W),更新状态:

    dp[j] = max(dp[j], dp[j - w[i]] + v[i])

    其中dp[j - w[i]]表示当前容量减去物品重量时的最大价值。

  • 初始化:dp[0] = 0(当背包容量为0时,最大价值为0),其余dp[j]初始化为0。

C++实现:

以下是解决完全背包问题的C++代码示例:

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

int completeKnapsack(int W, const vector<int>& weights, const vector<int>& values) {
    int n = weights.size();
    vector<int> dp(W + 1, 0);

    // 遍历每种物品  
    for (int i = 0; i < n; ++i) {
        // 遍历背包容量  
        for (int j = weights[i]; j <= W; ++j) {
            dp[j] = max(dp[j], dp[j - weights[i]] + values[i]);
        }
    }

    return dp[W]; // 返回最大价值  
}

int main() {
    int W = 10; // 背包最大容量  
    vector<int> weights = {2, 3, 4}; // 物品重量  
    vector<int> values = {3, 4, 5}; // 物品价值  

    int maxValue = completeKnapsack(W, weights, values);
    cout << "最大价值: " << maxValue << endl;

    return 0;
}

代码说明:

  • completeKnapsack函数接受背包最大容量W、物品重量向量weights和物品价值向量values。
  • 使用动态规划数组dp存储各状态下的最大价值。
  • 第一层循环遍历每种物品,第二层循环遍历背包容量并更新dp数组。
  • 最终返回dp[W],即在给定容量下的最大价值。

复杂度分析:

时间复杂度为O(n * W),其中n为物品数量,W为背包容量;空间复杂度为O(W),由于采用了一维数组dp。

  • 18
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值