1.分发饼干
https://leetcode.cn/problems/assign-cookies/
class Solution {
public:
//为了满足更多的小孩,就不要造成饼干尺寸的浪费。
//大尺寸的饼干既可以满足胃口大的孩子也可以满足胃口小的孩子,那么就应该优先满足胃口大的。
//这里的局部最优就是大饼干喂给胃口大的,充分利用饼干尺寸喂饱一个,全局最优就是喂饱尽可能多的小孩。
//尝试使用贪心策略,先将饼干数组和小孩数组排序。然后从后向前遍历小孩数组,用大饼干优先满足胃口大的,并统计满足小孩数量。
int findContentChildren(vector<int>& g, vector<int>& s) {
//排序
sort(g.begin(),g.end());
sort(s.begin(),s.end());
//大尺寸饼干,优先满足胃口大的小孩
int index = s.size()-1; //采用指针index指向饼干尺寸,避免依次循环
int result = 0;
//遍历小孩的胃口
for(int i = g.size()-1;i>=0;i--){
if(index >= 0 && g[i] <= s[index]){
index--;
result++;
}
}
return result;
}
};
2.最大子数组和
https://leetcode.cn/problems/maximum-subarray/submissions/
class Solution {
public:
//局部最优:当前“连续和”为负数的时候立刻放弃,从下一个元素重新计算“连续和”,因为负数加上下一个元素 “连续和”只会越来越小。
//全局最优:选取最大“连续和”
int maxSubArray(vector<int>& nums) {
int result = INT32_MIN;
cout<<result;
int count = 0;
for (int i = 0; i < nums.size(); i++) {
count += nums[i];
if (count > result) { // 取区间累计的最大值(相当于不断确定最大子序终止位置)
result = count;
}
if (count <= 0) count = 0; // 相当于重置最大子序起始位置,因为遇到负数一定是拉低总和
}
return result;
}
};
https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-ii/
class Solution {
public:
//最终利润是可以分解的
//prices[3] - prices[0]。相当于(prices[3] - prices[2]) + (prices[2] - prices[1]) + (prices[1] - prices[0])。
//此时就是把利润分解为每天为单位的维度,而不是从0天到第3天整体去考虑
//也就是,我要求0天买入,3天卖出的利润,只需要求出前面每一天与前一天的利润,之后求和即可。
//所以最大利润,为相邻两天利润序列中,为正数元素之和
int maxProfit(vector<int>& prices) {
int result =0;
for(int i=1;i<prices.size();i++){
result += max(prices[i]-prices[i-1],0);//正数元素之和
}
return result;
}
};
4.跳跃游戏
https://leetcode.cn/problems/jump-game/submissions/
class Solution {
public:
// 不一定非要明确一次究竟跳几步,每次取最大的跳跃步数,这个就是可以跳跃的覆盖范围。
// 那么这个问题就转化为跳跃覆盖范围究竟可不可以覆盖到终点!
// 贪心算法局部最优解:每次取最大跳跃步数(取最大覆盖范围),整体最优解:最后得到整体最大覆盖范围,看是否能到终点。
bool canJump(vector<int>& nums) {
int cover = 0;
if (nums.size() == 1) return true; // 只有一个元素,就是能达到
for (int i = 0; i <= cover; i++) { // 注意这里是小于等于cover
cover = max(i + nums[i], cover);
if (cover >= nums.size() - 1) return true; // 说明可以覆盖到终点了
}
return false;
}
};