! ! ! 组合数的推导部分不讲, 想看这部分的可以转战了. 主要记录一下这题的前缀和部分, 和之前见过的不太一样.
题意
平面直角坐标系上有 n 个矩形,其中第 i 个的左上角坐标为 ( x i 1 , y i 1 x_{i1},y_{i1} xi1,yi1),右下角坐标为 ( x i 2 , y i 2 x_{i2},y_{i2} xi2,yi2)。
对于 k ∈ [ 1 , n ] k∈[1,n] k∈[1,n],求解在 n n n 个矩形中随机选取 k k k 个不同的矩形,其所有覆盖部分的并集的面积的期望值,答案对 998244353 998244353 998244353 取模。
思路
根据题解 ( 嘿嘿 ) , 有公式( 其中
g
i
g_i
gi表示被
c
c
c个矩形覆盖的面积和 ):
那么我们就要用前缀和维护出来
g
i
g_i
gi, 然后套公式.
维护前缀和
首先离散化是肯定的 ,很板的离散化, 看代码就好.
假设这题没有离散化, 我们就要维护出来每个点被多少矩形覆盖. 题目给出的是矩形的左上角和右下角坐标. 不妨:
for (int i = 0; i < n; ++i) {//左上坐标为x[i],y[i];右下坐标为xx[i],yy[i]
f[x[i]][y[i]] += 1;
f[xx[i]][y[i]] -= 1;
f[x[i]][yy[i]] -= 1;
f[xx[i]][yy[i]] += 1;
}
就相当于在 x 和 y 轴同时开了两个差分数组. 但是为什么有f[xx[i]][yy[i]] += 1;
呢?
当我们执行这个差分数组的求和操作时:
for (int i = 1; i <= xs; ++i) {
for (int j = 1; j <= ys; ++j) {
f[i][j] += f[i][j - 1];
}
}
for (int i = 1; i <= xs; ++i) {
for (int j = 1; j <= ys; ++j) {
f[i][j] += f[i - 1][j];
}
}
可以看到每个点都会向以它为顶点的右下方矩形提供贡献, 两个 -1 的贡献在 2 号区域重叠. 故要给 2 号区域加上 1.
求和完成后f[i][j]
就代表了[i][j]
这点被多少矩形覆盖了.
那换回离散前, 他是上什么?
在离散数组xSort[],ySort[]
里, [i][j]
和它前一个值之间是没有矩形的顶点落进去的, 也就是说在以(i,j)
为右下角, 以(i,j)
在离散数组中前一个点为左上角的矩形中, 所有点被覆盖的矩形个数都是一样的, 那f[i][j]
乘上这个矩形的面积, 就是这些点的贡献.
num[f[i][j]] += Z(xSort[i] - xSort[i - 1]) * (ySort[j] - ySort[j - 1]);
完整代码:
#include<bits/stdc++.h>
using namespace std;
#ifdef LOCAL
#include "D:\Users\TauLee\OneDrive\Mine\c++\debug.h"
#else
#define debug(...) 42;
#define endl '\n'
#endif
//------取模机------//
using i64 = long long;
template<class T>
constexpr T power(T a, i64 b) {
T res {1};
for (; b; b /= 2, a *= a) {
if (b % 2) {
res *= a;
}
}
return res;
} // 快速幂
constexpr i64 mul(i64 a, i64 b, i64 p) {
i64 res = a * b - i64(1.L * a * b / p) * p;
res %= p;
if (res < 0) {
res += p;
}
return res;
} // 取模乘
template<i64 P>
struct MInt {
i64 x;
constexpr MInt() : x {0} {}
constexpr MInt(i64 x) : x {norm(x % getMod())} {}
static i64 Mod;
constexpr static i64 getMod() {
if (P > 0) {
return P;
} else {
return Mod;
}
}
constexpr static void setMod(i64 Mod_) {
Mod = Mod_;
}//只有P<=0, setMod才生效
constexpr i64 norm(i64 x) const {
if (x < 0) {
x += getMod();
}
if (x >= getMod()) {
x -= getMod();
}
return x;
}
constexpr i64 val() const {
return x;
}
constexpr MInt operator-() const {
MInt res;
res.x = norm(getMod() - x);
return res;
}
constexpr MInt inv() const {
return power(*this, getMod() - 2);
}
constexpr MInt &operator*=(MInt rhs) & {
if (getMod() < (1ULL << 31)) {
x = x * rhs.x % int(getMod());
} else {
x = mul(x, rhs.x, getMod());
}
return *this;
}
constexpr MInt &operator+=(MInt rhs) & {
x = norm(x + rhs.x);
return *this;
}
constexpr MInt &operator-=(MInt rhs) & {
x = norm(x - rhs.x);
return *this;
}
constexpr MInt &operator/=(MInt rhs) & {
return *this *= rhs.inv();
}
friend constexpr MInt operator*(MInt lhs, MInt rhs) {
MInt res = lhs;
res *= rhs;
return res;
}
friend constexpr MInt operator+(MInt lhs, MInt rhs) {
MInt res = lhs;
res += rhs;
return res;
}
friend constexpr MInt operator-(MInt lhs, MInt rhs) {
MInt res = lhs;
res -= rhs;
return res;
}
friend constexpr MInt operator/(MInt lhs, MInt rhs) {
MInt res = lhs;
res /= rhs;
return res;
}
friend constexpr std::istream &operator>>(std::istream &is, MInt &a) {
i64 v;
is >> v;
a = MInt(v);
return is;
}
friend constexpr std::ostream &operator<<(std::ostream &os, const MInt &a) {
return os << a.val();
}
friend constexpr bool operator==(MInt lhs, MInt rhs) {
return lhs.val() == rhs.val();
}
friend constexpr bool operator!=(MInt lhs, MInt rhs) {
return lhs.val() != rhs.val();
}
friend constexpr bool operator<(MInt lhs, MInt rhs) {
return lhs.val() < rhs.val();
}
};
template<>
i64 MInt<0>::Mod = 998244353; //只有P<=0, Mod才生效
constexpr int P = 998244353; //在这设置要用的模数
using Z = MInt<P>;
//------取模机------//
//----计算组合数----//
struct Comb {
int n;
std::vector<Z> _fac; //阶乘
std::vector<Z> _invfac; //阶乘的逆元
std::vector<Z> _inv; //数字的逆元
Comb() : n{0}, _fac{1}, _invfac{1}, _inv{0} {}
Comb(int n) : Comb() {
init(n);
}
void init(int m) {
m = std::min<i64>(m, Z::getMod() - 1);
if (m <= n) return;
_fac.resize(m + 1);
_invfac.resize(m + 1);
_inv.resize(m + 1);
for (int i = n + 1; i <= m; i++) {
_fac[i] = _fac[i - 1] * i;
}
_invfac[m] = _fac[m].inv();
for (int i = m; i > n; i--) {
_invfac[i - 1] = _invfac[i] * i;
_inv[i] = _invfac[i] * _fac[i - 1];
}
n = m;
}
Z fac(int m) {
if (m > n) init(2 * m);
return _fac[m];
}
Z invfac(int m) {
if (m > n) init(2 * m);
return _invfac[m];
}
Z inv(int m) {
if (m > n) init(2 * m);
return _inv[m];
}
Z C(int n, int m) {
if (n < m || m < 0) return 0;
return fac(n) * invfac(m) * invfac(n - m);
}
Z A(int n, int m) {
if (n < m || m < 0 ) return 0;
return fac(n) * invfac(m);
}
} comb;
//----计算组合数----//
#define int long long
signed main()
{
ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr);
int n;
cin >> n;
vector<int>x(n), y(n), xx(n), yy(n);//一维权值, 二维离散后的坐标.
vector<int>xSort, ySort;
for (int i = 0; i < n; ++i) {
cin >> x[i] >> y[i] >> xx[i] >> yy[i];
xSort.emplace_back(x[i]);
ySort.emplace_back(y[i]);
xSort.emplace_back(xx[i]);
ySort.emplace_back(yy[i]);
}
sort(xSort.begin(), xSort.end());
sort(ySort.begin(), ySort.end());
int xs = unique(xSort.begin(), xSort.end()) - xSort.begin();
int ys = unique(ySort.begin(), ySort.end()) - ySort.begin();
xSort.resize(xs);
ySort.resize(ys);
for (int i = 0; i < n; ++i) {
x[i] = lower_bound(xSort.begin(), xSort.end(), x[i]) - xSort.begin() + 1;
y[i] = lower_bound(ySort.begin(), ySort.end(), y[i]) - ySort.begin() + 1;
xx[i] = lower_bound(xSort.begin(), xSort.end(), xx[i]) - xSort.begin() + 1;
yy[i] = lower_bound(ySort.begin(), ySort.end(), yy[i]) - ySort.begin() + 1;
}
vector<vector<int>>f(xs + 1, vector<int>(ys + 1, 0));
for (int i = 0; i < n; ++i) {
f[x[i]][y[i]] += 1;
f[xx[i]][y[i]] -= 1;
f[x[i]][yy[i]] -= 1;
f[xx[i]][yy[i]] += 1;
}
for (int i = 1; i <= xs; ++i) {
for (int j = 1; j <= ys; ++j) {
f[i][j] += f[i][j - 1];
}
}
for (int i = 1; i <= xs; ++i) {
for (int j = 1; j <= ys; ++j) {
f[i][j] += f[i - 1][j];
}
} // 统计每个点被覆盖多少次
vector<Z>num(n + 1); // 被覆盖i次的有多少个
for (int i = 1; i <= xs; ++i) {
for (int j = 1; j <= ys; ++j) {
num[f[i][j]] += Z(xSort[i] - xSort[i - 1]) * (ySort[j] - ySort[j - 1]);
}
}
for (int k = 1; k <= n; k++) {
Z ans = 0;
for (int i = 0; i <= n; i++) {
ans += (comb.C(n, k) - comb.C(n - i, k)) * num[i];
}
ans /= comb.C(n, k);
cout << ans << "\n";
}
}