2024HDU暑假多校1012(hduoj 7444) --并 题解

原题链接

! ! ! 组合数的推导部分不讲, 想看这部分的可以转战了. 主要记录一下这题的前缀和部分, 和之前见过的不太一样.

题意

平面直角坐标系上有 n 个矩形,其中第 i 个的左上角坐标为 ( x i 1 , y i 1 x_{i1},y_{i1} xi1,yi1),右下角坐标为 ( x i 2 , y i 2 x_{i2},y_{i2} xi2,yi2)。

对于 k ∈ [ 1 , n ] k∈[1,n] k[1,n],求解在 n n n 个矩形中随机选取 k k k 个不同的矩形,其所有覆盖部分的并集的面积的期望值,答案对 998244353 998244353 998244353 取模。

思路

根据题解 ( 嘿嘿 ) , 有公式( 其中 g i g_i gi表示被 c c c个矩形覆盖的面积和 ):
在这里插入图片描述
那么我们就要用前缀和维护出来 g i g_i gi, 然后套公式.

维护前缀和

首先离散化是肯定的 ,很板的离散化, 看代码就好.

假设这题没有离散化, 我们就要维护出来每个点被多少矩形覆盖. 题目给出的是矩形的左上角和右下角坐标. 不妨:

    for (int i = 0; i < n; ++i) {//左上坐标为x[i],y[i];右下坐标为xx[i],yy[i]
        f[x[i]][y[i]] += 1;
        f[xx[i]][y[i]] -= 1;
        f[x[i]][yy[i]] -= 1;
        f[xx[i]][yy[i]] += 1;
    }

就相当于在 x 和 y 轴同时开了两个差分数组. 但是为什么有f[xx[i]][yy[i]] += 1;呢?

当我们执行这个差分数组的求和操作时:

    for (int i = 1; i <= xs; ++i) {
        for (int j = 1; j <= ys; ++j) {
            f[i][j] += f[i][j - 1];
        }
    }
    for (int i = 1; i <= xs; ++i) {
        for (int j = 1; j <= ys; ++j) {
            f[i][j] += f[i - 1][j];
        }
    }

可以看到每个点都会向以它为顶点的右下方矩形提供贡献, 两个 -1 的贡献在 2 号区域重叠. 故要给 2 号区域加上 1.
在这里插入图片描述

求和完成后f[i][j]就代表了[i][j]这点被多少矩形覆盖了.

那换回离散前, 他是上什么?

在离散数组xSort[],ySort[]里, [i][j]和它前一个值之间是没有矩形的顶点落进去的, 也就是说在以(i,j)为右下角, 以(i,j)在离散数组中前一个点为左上角的矩形中, 所有点被覆盖的矩形个数都是一样的, 那f[i][j]乘上这个矩形的面积, 就是这些点的贡献.

num[f[i][j]] += Z(xSort[i] - xSort[i - 1]) * (ySort[j] - ySort[j - 1]);

完整代码:

#include<bits/stdc++.h>
using namespace std;
#ifdef LOCAL
#include "D:\Users\TauLee\OneDrive\Mine\c++\debug.h"
#else
#define debug(...) 42;
#define endl '\n'
#endif
//------取模机------//
using i64 = long long;
template<class T>
constexpr T power(T a, i64 b) {
    T res {1};
    for (; b; b /= 2, a *= a) {
        if (b % 2) {
            res *= a;
        }
    }
    return res;
} // 快速幂

constexpr i64 mul(i64 a, i64 b, i64 p) {
    i64 res = a * b - i64(1.L * a * b / p) * p;
    res %= p;
    if (res < 0) {
        res += p;
    }
    return res;
} // 取模乘

template<i64 P>
struct MInt {
    i64 x;
    constexpr MInt() : x {0} {}
    constexpr MInt(i64 x) : x {norm(x % getMod())} {}

    static i64 Mod;
    constexpr static i64 getMod() {
        if (P > 0) {
            return P;
        } else {
            return Mod;
        }
    }
    constexpr static void setMod(i64 Mod_) {
        Mod = Mod_;
    }//只有P<=0, setMod才生效
    constexpr i64 norm(i64 x) const {
        if (x < 0) {
            x += getMod();
        }
        if (x >= getMod()) {
            x -= getMod();
        }
        return x;
    }
    constexpr i64 val() const {
        return x;
    }
    constexpr MInt operator-() const {
        MInt res;
        res.x = norm(getMod() - x);
        return res;
    }
    constexpr MInt inv() const {
        return power(*this, getMod() - 2);
    }
    constexpr MInt &operator*=(MInt rhs) & {
        if (getMod() < (1ULL << 31)) {
            x = x * rhs.x % int(getMod());
        } else {
            x = mul(x, rhs.x, getMod());
        }
        return *this;
    }
    constexpr MInt &operator+=(MInt rhs) & {
        x = norm(x + rhs.x);
        return *this;
    }
    constexpr MInt &operator-=(MInt rhs) & {
        x = norm(x - rhs.x);
        return *this;
    }
    constexpr MInt &operator/=(MInt rhs) & {
        return *this *= rhs.inv();
    }
    friend constexpr MInt operator*(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res *= rhs;
        return res;
    }
    friend constexpr MInt operator+(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res += rhs;
        return res;
    }
    friend constexpr MInt operator-(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res -= rhs;
        return res;
    }
    friend constexpr MInt operator/(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res /= rhs;
        return res;
    }
    friend constexpr std::istream &operator>>(std::istream &is, MInt &a) {
        i64 v;
        is >> v;
        a = MInt(v);
        return is;
    }
    friend constexpr std::ostream &operator<<(std::ostream &os, const MInt &a) {
        return os << a.val();
    }
    friend constexpr bool operator==(MInt lhs, MInt rhs) {
        return lhs.val() == rhs.val();
    }
    friend constexpr bool operator!=(MInt lhs, MInt rhs) {
        return lhs.val() != rhs.val();
    }
    friend constexpr bool operator<(MInt lhs, MInt rhs) {
        return lhs.val() < rhs.val();
    }
};

template<>
i64 MInt<0>::Mod = 998244353; //只有P<=0, Mod才生效

constexpr int P = 998244353; //在这设置要用的模数
using Z = MInt<P>;
//------取模机------//

//----计算组合数----//
struct Comb {
    int n;
    std::vector<Z> _fac; //阶乘
    std::vector<Z> _invfac; //阶乘的逆元
    std::vector<Z> _inv; //数字的逆元

    Comb() : n{0}, _fac{1}, _invfac{1}, _inv{0} {}
    Comb(int n) : Comb() {
        init(n);
    }

    void init(int m) {
        m = std::min<i64>(m, Z::getMod() - 1);
        if (m <= n) return;
        _fac.resize(m + 1);
        _invfac.resize(m + 1);
        _inv.resize(m + 1);

        for (int i = n + 1; i <= m; i++) {
            _fac[i] = _fac[i - 1] * i;
        }
        _invfac[m] = _fac[m].inv();
        for (int i = m; i > n; i--) {
            _invfac[i - 1] = _invfac[i] * i;
            _inv[i] = _invfac[i] * _fac[i - 1];
        }
        n = m;
    }

    Z fac(int m) {
        if (m > n) init(2 * m);
        return _fac[m];
    }
    Z invfac(int m) {
        if (m > n) init(2 * m);
        return _invfac[m];
    }
    Z inv(int m) {
        if (m > n) init(2 * m);
        return _inv[m];
    }
    Z C(int n, int m) {
        if (n < m || m < 0) return 0;
        return fac(n) * invfac(m) * invfac(n - m);
    }
    Z A(int n, int m) {
        if (n < m || m < 0 ) return 0;
        return fac(n) * invfac(m);
    }
} comb;
//----计算组合数----//

#define int long long

signed main()
{
    ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr);
    int n;
    cin >> n;

    vector<int>x(n), y(n), xx(n), yy(n);//一维权值, 二维离散后的坐标.
    vector<int>xSort, ySort;
    for (int i = 0; i < n; ++i) {
        cin >> x[i] >> y[i] >> xx[i] >> yy[i];
        xSort.emplace_back(x[i]);
        ySort.emplace_back(y[i]);
        xSort.emplace_back(xx[i]);
        ySort.emplace_back(yy[i]);
    }

    sort(xSort.begin(), xSort.end());
    sort(ySort.begin(), ySort.end());
    int xs = unique(xSort.begin(), xSort.end()) - xSort.begin();
    int ys = unique(ySort.begin(), ySort.end()) - ySort.begin();
    xSort.resize(xs);
    ySort.resize(ys);
    for (int i = 0; i < n; ++i) {
        x[i] = lower_bound(xSort.begin(), xSort.end(), x[i]) - xSort.begin() + 1;
        y[i] = lower_bound(ySort.begin(), ySort.end(), y[i]) - ySort.begin() + 1;
        xx[i] = lower_bound(xSort.begin(), xSort.end(), xx[i]) - xSort.begin() + 1;
        yy[i] = lower_bound(ySort.begin(), ySort.end(), yy[i]) - ySort.begin() + 1;
    }

    vector<vector<int>>f(xs + 1, vector<int>(ys + 1, 0));
    for (int i = 0; i < n; ++i) {
        f[x[i]][y[i]] += 1;
        f[xx[i]][y[i]] -= 1;
        f[x[i]][yy[i]] -= 1;
        f[xx[i]][yy[i]] += 1;
    }
    for (int i = 1; i <= xs; ++i) {
        for (int j = 1; j <= ys; ++j) {
            f[i][j] += f[i][j - 1];
        }
    }
    for (int i = 1; i <= xs; ++i) {
        for (int j = 1; j <= ys; ++j) {
            f[i][j] += f[i - 1][j];
        }
    } // 统计每个点被覆盖多少次

    vector<Z>num(n + 1); // 被覆盖i次的有多少个
    for (int i = 1; i <= xs; ++i) {
        for (int j = 1; j <= ys; ++j) {
            num[f[i][j]] += Z(xSort[i] - xSort[i - 1]) * (ySort[j] - ySort[j - 1]);
        }
    }

    for (int k = 1; k <= n; k++) {
        Z ans = 0;
        for (int i = 0; i <= n; i++) {
            ans += (comb.C(n, k) - comb.C(n - i, k)) * num[i];
        }
        ans /= comb.C(n, k);
        cout << ans << "\n";
    }
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值