线性回归——初始线性回归API

from sklearn.linear_model import LinearRegression

#1.获取数据
x=[[80,86],
   [82,80],
   [85,78],
   [90,90],
   [86,82],
   [82,90],
   [78,80],
   [92,94]]
y=[84.2,80.6,80.1,90,83.2,87.6,79.4,93.4]


#2.模型训练
#2.1实例化一个估计器
estimator = LinearRegression()
#2.2使用fit方法进行训练
estimator.fit(x,y)
#打印对应的系数:
print("线性回归的系数是:\n",estimator.coef_)

#打印的预测结果是:
print("输出预测结果:\n",estimator.predict([[100,80]]))



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Code Slacker

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值