题目描述
味味妈妈有一串珠子串成的项链,这个项链中的珠子最多有 3 种颜色(红、蓝、白, 分别用 r、b、w 表示)。某天,味味想从妈妈项链中取出一些珠子来玩,妈妈虽然答应了, 但提出了以下条件:
(1)只能在项链中选择一个地方剪断,然后从断开的两端开始依次取出珠子;
(2)每一端取珠子时,如果珠子颜色与该端第一颗珠子颜色相同则可以连续取下去, 直到出现一颗与该端第一颗颜色不同的珠子。如果遇到白色珠子则可根据需要看做蓝色或者 红色。
味味对于颜色并没有特殊要求,但她想得到尽可能多的珠子。
为方便表示,我们给项链中的珠子按顺时针方向编号,如图-1 和图-2 所示为两种可能的项链情况(珠子都有 11 颗)。
对于图-1 来说,如果在 1 和 2 号珠子之间剪断,则味味可以取到共 2 颗珠子。而如果 在 6 和 7 号珠子之间剪断,则味味可以取到共 5 颗珠子(左边取 3 颗红色 r,右边取 2 颗 蓝色 b),而 5 颗珠子也是味味从这串项链中最多可以取到的珠子数量。
对于图-2 中的项链来说,如果在 1 和 2 号珠子之间剪断,则共可取走 4 颗珠子(将 1 号珠子当做蓝色,这样左边可取 3 颗,右边可取 1 颗蓝色 b)。而如果在 2 和 3 号之间剪断, 则共可取走 6 颗珠子(将 1 号珠子当做蓝色,这样左边可取 4 颗蓝色 b,右边可取 2 颗红 色 r)。
输入
输入共包含二行。第一行一个整数 n,表示项链中珠子的总数。第二行为 一串长度为 n 的字符,由字符 r,b,w 组成。表示项链从某个珠子开始按顺时针方向展开 的珠子排列情况(当然,这个珠子并不一定是味味实际需要剪断的位置)。
输出
输出仅包含一行一个数值,表示按照妈妈的规则,味味最多能得到的珠子数量。
样例输入 Copy
11
wbrrbbwbrbb
样例输出 Copy
6
提示
将 1 号珠子看成蓝色,则在 2 和 3 号珠子之间剪断,味味可得到的 6 颗珠子编号分别为1、2、3、4、10、11;也可在 4 和 5 号珠子间剪断,将 7 号珠子看成蓝色,则味味可得到珠子的编号为 3、4、5、6、7、8。
对于 60%的数据 3≤n≤100
对于 100%的数据 3≤n≤350
题意
给定一个由n个珠子组成的项链(由红、蓝、白组成, 分别用 r、b、w 表示)。
可以任意选择两个珠子中间剪断,从两端开始依次取珠子,每一端取珠子时,如果珠子颜色与该端第一颗珠子颜色相同则可以连续取下去, 直到出现一颗与该端第一颗颜色不同的珠子。如果遇到白色珠子则可根据需要看做蓝色或者红色。
求最大可以取出的珠子数量。
3≤n≤350
分析
看到n的范围,直接暴力模拟,先把字符串扩大一倍(加上它本身),保证每个点都能够取足n个字符。
这个题的坑点比较麻烦。
两端可能会出现白色,这个时候我们就要求两种情况(白为红或者白为蓝)的最大值。
如果两端没有白色,就正常取就行
如果直接模拟从两端取珠子不打标记的话,可能会取重复的珠子,当然能够取到重复的珠子直接输出n就行。
代码
#include <cstring>
#include <iostream>
using namespace std;
string s;
int main()
{
int n;
cin >> n;
cin >> s;
s = s + s;//扩大一倍
int maxx = 0;
for (int i = 0; i < n; i++)
{
string p = s.substr(i, n);//从i点取n个出来
char l, r;
l = p[0], r = p[n - 1];//左端点和右端点
int count = 2;
if (l == 'w' || r == 'w')//如果有端点是白色
{
if (l == 'w')
{
int count1 = 0;
l = 'r';
for (int i = 1; i < n; i++)
{
if (p[i] == l || p[i] == 'w')
{
count1++;
}
else
{
break;
}
}
int count2 = 0;
l = 'b';
for (int i = 1; i < n; i++)
{
if (p[i] == l || p[i] == 'w')
{
count2++;
}
else
{
break;
}
}
count += max(count1, count2);
}
else
{
for (int i = 1; i < n; i++)
{
if (p[i] == l || p[i] == 'w')
{
count++;
}
else
{
break;
}
}
}
if (r == 'w')
{
int count1 = 0;
r = 'r';
for (int i = n - 2; i > 0; i--)
{
if (p[i] == r || p[i] == 'w')
{
count1++;
}
else
{
break;
}
}
int count2 = 0;
r = 'b';
for (int i = n - 2; i > 0; i--)
{
if (p[i] == r || p[i] == 'w')
{
count2++;
}
else
{
break;
}
}
count += max(count1, count2);
}
maxx = max(maxx, count);
}
else
{
for (int i = 1; i < n; i++)
{
if (p[i] == l || p[i] == 'w')
{
count++;
}
else
{
break;
}
}
for (int i = n - 2; i > 0; i--)
{
if (p[i] == r || p[i] == 'w')
{
count++;
}
else
{
break;
}
}
maxx = max(maxx, count);
}
}
cout << min(maxx, n) << endl;//如果有重复的直接输出n即可
return 0;
}