题解 - 折纸

题目描述

小爱手中有一张矩形纸张,他想把这张纸分成若干正方形纸片,具体分法如下:
。第1步:小爱会先确定纸张的长宽,假设短边长度为几,长边长度为m,
。第2步:小爱会将短边沿直角平分线对折后剪去,从而得到一个nxn的方形纸片。
。第3步:若还有剩余,小爱会将剩余的长宽为几*(m-n)的纸张作为现有纸张,代入第一步后重复之前过
程,直至没有之后纸张剩余为止。
请问按如上操作,小爱最终会得到几张方形纸片?
例如:一开始,小爱有一张 10 x6 的纸张,按他的分割方法,最终他可以获得 4 张方形纸片,具体过程如下图所示:
在这里插入图片描述

输入格式
输入共两个正整数,表示初始矩形纸张的长宽 m,n
输出格式
输出题目所求能获得的矩形个数
数据范围
。对于 30% 的数据,1< n,m< 100
。对于 60% 的数据,1≤ n,m < 107
。对于 100% 的数据,1 ≤n,m < 1013

样例数据
输入:
10 6
输出:
4

分析

知识点:数学

解题思路:

对于长边 n n n ,它被取 w = ⌊ n / m ⌋ w=\lfloor n/m \rfloor w=n/m 后才会变成短边,剩余 n 1 = n − w ∗ m = n   m o d   m n1=n-w*m=n~mod~m n1=nwm=n mod m

所以对于一个对边,它对答案的贡献为 n / m n/m n/m 然后令 n = n % m n=n \% m n=n%m

容易发现这个过程本质就是gcd的过程,则时间复杂度一致

复杂度 O ( l o g n ) O(logn) O(logn)

代码

#include<bits/stdc++.h>
#define LL long long
using namespace std;
LL n,m;
int main(){
	cin>>n>>m; LL cnt=0;
	while(m){
		cnt+=n/m; n=n%m;
		swap(n,m);
	}
	cout<<cnt<<endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值