题目描述
小爱手中有一张矩形纸张,他想把这张纸分成若干正方形纸片,具体分法如下:
。第1步:小爱会先确定纸张的长宽,假设短边长度为几,长边长度为m,
。第2步:小爱会将短边沿直角平分线对折后剪去,从而得到一个nxn的方形纸片。
。第3步:若还有剩余,小爱会将剩余的长宽为几*(m-n)的纸张作为现有纸张,代入第一步后重复之前过
程,直至没有之后纸张剩余为止。
请问按如上操作,小爱最终会得到几张方形纸片?
例如:一开始,小爱有一张 10 x6 的纸张,按他的分割方法,最终他可以获得 4 张方形纸片,具体过程如下图所示:
输入格式
输入共两个正整数,表示初始矩形纸张的长宽 m,n
输出格式
输出题目所求能获得的矩形个数
数据范围
。对于 30% 的数据,1< n,m< 100
。对于 60% 的数据,1≤ n,m < 107
。对于 100% 的数据,1 ≤n,m < 1013
样例数据
输入:
10 6
输出:
4
分析
知识点:数学
解题思路:
对于长边 n n n ,它被取 w = ⌊ n / m ⌋ w=\lfloor n/m \rfloor w=⌊n/m⌋ 后才会变成短边,剩余 n 1 = n − w ∗ m = n m o d m n1=n-w*m=n~mod~m n1=n−w∗m=n mod m
所以对于一个对边,它对答案的贡献为 n / m n/m n/m 然后令 n = n % m n=n \% m n=n%m
容易发现这个过程本质就是gcd的过程,则时间复杂度一致
复杂度 O ( l o g n ) O(logn) O(logn)
代码
#include<bits/stdc++.h>
#define LL long long
using namespace std;
LL n,m;
int main(){
cin>>n>>m; LL cnt=0;
while(m){
cnt+=n/m; n=n%m;
swap(n,m);
}
cout<<cnt<<endl;
}