参考文献链接:代码随想录
本人代码是Java版本的,如有别的版本需要请上代码随想录网站查看。
235. 二叉搜索树的最近公共祖先
解题思路
昨天我们做的二叉树的最近公共祖先,是通过后序遍历去上方是否有两个节点的最近公共祖先,并且我们用了回溯。
今天这道题目是二叉搜索树,那么二叉搜索树的特性我们一定要利用起来,也就是有序性。
我们从上往下遍历即可,当我们找到某一节点的val值大于p的值小于q的值,或者小于q大于p,这个时候说明该节点是公共祖先,那是不是最近公共祖先呢?
其实是的,当这种情况下(比如现在大于p小于q),如果我们向左遍历那下面的节点就不会大于p,同理向右遍历就不会小于q,这是二叉搜素树的顺序。
代码示例
class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if(root == null){
return root;
}
int temp = root.val;
if(temp > p.val && temp > q.val){
return lowestCommonAncestor(root.left,p,q);
}
if(temp < p.val && temp < q.val){
return lowestCommonAncestor(root.right,p,q);
}
return root;
}
}
701.二叉搜索树中的插入操作
解题思路
这道题题目中说你可以返回 任意有效的结果,但其实我们只要找到对应的位置为null的话插入即可。
比如如果我们判断val小于某个节点的val,那我们就去遍历该节点的左节点,如果左节点为null,插入该值即可,就满足了二叉搜素树。
那么我们如何遍历?一定不是按前中后序,因为是二叉搜索树,所以要利用二叉搜索树的特性,根据val值和节点val值的大小去进行向左或者向右遍历。
代码示例
class Solution {
public TreeNode insertIntoBST(TreeNode root, int val) {
if(root == null){
TreeNode insert = new TreeNode(val);
return insert;
}
if(root.val > val) root.left = insertIntoBST(root.left,val);
if(root.val < val) root.right = insertIntoBST(root.right,val);
return root;
}
}
450.删除二叉搜索树中的节点
解题思路
这道题目是删除节点,首先要思考下如何删除节点有几种情况,第一种是该节点没有左右孩子,那直接删除即可。第二种是左或者右为空,那直接把不为空的顶上来即可。第三种是左右都不为空,那就让右孩子顶上来,左孩子去右孩子的最左边。
这道题目递归和迭代都可以解决,我这里主要说一下迭代。
首先我们为了删除它后去接上下面的子树,我们要记录pre上个节点。
然后我们去遍历即可,如果一直找不到对应key则返回原树即可,如果找到即终止循环,对cur和pre进行删除操作。即代码中deleteOneNode方法。
代码示例
class Solution {
public TreeNode deleteNode(TreeNode root, int key) {
if (root == null){
return null;
}
//寻找对应的对应的前面的节点,以及他的前一个节点
TreeNode cur = root;
TreeNode pre = null;
while (cur != null){
if (cur.val < key){
pre = cur;
cur = cur.right;
} else if (cur.val > key) {
pre = cur;
cur = cur.left;
}else {
break;
}
}
if (pre == null){
return deleteOneNode(cur);
}
if (pre.left !=null && pre.left.val == key){
pre.left = deleteOneNode(cur);
}
if (pre.right !=null && pre.right.val == key){
pre.right = deleteOneNode(cur);
}
return root;
}
//处理删除逻辑
public TreeNode deleteOneNode(TreeNode node){
if (node == null){
return null;
}
if (node.right == null){
return node.left;
}
TreeNode cur = node.right;
while (cur.left !=null){
cur = cur.left;
}
cur.left = node.left;
return node.right;
}
}