目录
一、快速排序主函数
quickSort函数是快速排序算法的核心函数,用于对传入的整型数组arr进行排序。该函数使用递归的方式实现快速排序。
其中,strat和end参数表示当前需要排序的数组部分的起始和终止下标,而mid则表示当前数组的中间下标,即分区中心下标,由partition函数返回。在排序的过程中,如果当前子数组只有一个或没有元素,则不进行划分,排序直接结束。
如果需要划分数组,则调用partition函数进行分区,将数组分为左右两部分,将各自递归进行排序,直到排序完整个数组。具体实现中,先取数组第一个元素作为分区元素,然后使用while循环,寻找需要交换的元素,将其移动到正确位置,直到左右指针相遇,并将分区元素与左指针交换后返回中心点的位置。
整个排序过程中,每次递归调用快速排序函数时,都传入需要排序的子数组部分,并一次次划分成更小的子数组,最终得到排序好的有序数组。
代码如下:
-
// 定义快速排序函数,递归实现
-
void quickSort(int(&arr)[10], int strat, int end) {
-
// 前提条件
-
if (strat >= end)
-
return;
-
// 分区,返回分区下标
-
int mid = partition(arr, strat, end);
-
// 递归调用
-
quickSort(arr, strat, mid - 1);
-
quickSort(arr, mid + 1, end);
-
}
二、分区函数
1.选取支点
函数中的第一步是将数组第一个元素作为支点(pivot)。
int pivot = arr[strat];
2.定义左右指针,移动指针
函数定义了两个指针 left 和 right,分别初始化为 strat 和 end。接下来,左右指针开始分别从左侧和右侧遍历数组arr,找到需要交换的元素并将其交换位置。
-
while (left < right) {
-
while (arr[left] <= pivot && left < right)
-
left++;
-
while (arr[right] >= pivot && left < right)
-
right--;
-
swap(arr, left, right);
-
}
- 第一个while循环,left指针一直往右移动,直到找到大于pivot与arr[right]应该交换的元素。
- 第二个while循环,right指针一直往左移动,直到找到小于pivot与arr[left]应该交换的元素。
- 交换操作放在循环外面,因为left和right相遇时,交换操作还会执行一次,但此时已经没有必要进行交换了。
3.返回分割点的位置
通过left指针的位置来判断分割点的位置,left指针左侧的元素都小于pivot,右侧的元素都大于pivot。因此,判断left所指元素与pivot的大小关系,交换分割元素和left位置上的元素,更新分割点位置并返回。
-
if (arr[left] < pivot) {
-
// 将分割元素放到left指针指向的元素左边
-
swap(arr, strat, left);
-
return left;
-
} else if (arr[left] > pivot) {
-
// 将分割元素放到left指针指向的元素左边的前一个位置
-
swap(arr, strat, left - 1);
-
return left - 1;
-
}
- 在上面的代码中,如果left指向的元素小于支点pivot,则把pivot放在left之前,即交换arr[strat]和arr[left]的值。
- 如果left指向的元素大于支点,则把pivot放在left之前的位置,即交换arr[strat]和arr[left-1]的值。
代码如下:
-
// 数组分区
-
int partition(int(&arr)[10], int strat, int end) {
-
// 选取一个分区的-支点
-
int pivot = arr[strat];
-
// 左右指针指向
-
int left = strat, right = end;
-
while (left < right)
-
{
-
// 分别从左右两边遍历数组
-
while (arr[left] <= pivot && left < right)
-
left++;
-
while (arr[right] >= pivot && left < right)
-
right--;
-
// 交换左右指针的值
-
swap(arr, left, right);
-
}
-
if (arr[left] < pivot)
-
{
-
swap(arr, strat, left);
-
return left;
-
}
-
else if (arr[left] > pivot)
-
{
-
swap(arr, strat, left - 1);
-
return left - 1;
-
}
-
}
三、swap函数——元素互换
函数是对一个整型数组中的两个元素进行交换的函数,作用是将输入的整型数组arr中下标为i和j的元素交换位置。函数接收一个整型数组arr,和两个整型参数i和j,表示需要交换的元素在数组中的下标。函数先用一个中间变量temp记录第i个元素的值,然后将第i和j个元素的值进行交换。
代码如下:
-
// 元素互换
-
void swap(int(&arr)[10],int i,int j) {
-
int temp = arr[i];
-
arr[i] = arr[j];
-
arr[j] = temp;
-
}
四、printArr函数——打印输出
函数使用了 范围for 循环来遍历整型数组 arr,输出数组中每个元素的值。语句cout << num << '\t';
会输出该元素后面跟着一个水平制表符\t
,使得数组中每个元素的输出结果之间都会隔开一段距离,便于观察。函数输出一个换行符 cout << endl;
,使得下一次调用该函数输出内容不会和上一次输出结果粘在一起,以便输出更加整洁。
代码如下:
-
// 打印数组
-
void printArr(int(&arr)[10]) {
-
for (int num : arr)
-
cout << num << '\t';
-
cout << endl;
-
}
完整代码如下:
-
/*
-
* 快速排序
-
* @QuickSort()
-
*/
-
// 定义快速排序函数,递归实现
-
void quickSort(int(&arr)[10], int strat, int end) {
-
// 前提条件
-
if (strat >= end)
-
return;
-
// 分区,返回分区下标
-
int mid = partition(arr, strat, end);
-
// 递归调用
-
quickSort(arr, strat, mid - 1);
-
quickSort(arr, mid + 1, end);
-
}
-
// 数组分区
-
int partition(int(&arr)[10], int strat, int end) {
-
// 选取一个分区的-支点
-
int pivot = arr[strat];
-
// 左右指针指向
-
int left = strat, right = end;
-
while (left < right)
-
{
-
// 分别从左右两边遍历数组
-
while (arr[left] <= pivot && left < right)
-
left++;
-
while (arr[right] >= pivot && left < right)
-
right--;
-
// 交换左右指针的值
-
swap(arr, left, right);
-
}
-
if (arr[left] < pivot)
-
{
-
swap(arr, strat, left);
-
return left;
-
}
-
else if (arr[left] > pivot)
-
{
-
swap(arr, strat, left - 1);
-
return left - 1;
-
}
-
}
-
// 元素互换
-
void swap(int(&arr)[10],int i,int j) {
-
int temp = arr[i];
-
arr[i] = arr[j];
-
arr[j] = temp;
-
}
-
// 打印数组
-
void printArr(int(&arr)[10]) {
-
for (int num : arr)
-
cout << num << '\t';
-
cout << endl;
-
}
测试方法如下:
-
#include<iostream>
-
using namespace std;
-
void quickSort(int(&arr)[10], int strat, int end);
-
int partition(int(&arr)[10], int strat, int end);
-
void swap(int(&arr)[10], int i, int j);
-
void printArr(int(&arr)[10]);
-
// 快速排序测试方法
-
void Test() {
-
int arr[10] = { 23, 45, 18, 6, 11, 19, 22, 18, 12, 9 };
-
printArr(arr);
-
int size = sizeof(arr) / sizeof(arr[0]);
-
quickSort(arr, 0, size - 1);
-
printArr(arr);
-
}