1.动态规划-割绳子问题

问题描述

 Give you a rope of length n, please cut the rope into m segments (m and n are integers, n>1 and m>1). The length of each segment is denoted by k[0], k[1], ..., k[m]. What is the maximum possible product of k[0]*k[1]*...*k[m]? And analyze the time complexity of your solution.

翻译

给定一条长度为n的绳子,请将其切割成m段(m和n是整数,n>1且m>1)。每段的长度由k[0],k[1],...,k[m]表示。求k[0]*k[1]*...*k[m]的最大可能乘积,并分析你的解决方案的时间复杂度。

思路

绳子分为两半,前面一半为0~i(正在遍历的部分),后面一般为i~n。每次仅需要对正在遍历的部分进行处理即可,处理方式如下:

0~i的部分可以划分为任意的 (0~j,j+1~i)两端长度,其中j的范围从1~i变化(相当于遍历0~i)

因此需要两层循环,第一层i遍历绳子的长度,第二层j遍历前半段绳子的长度。

对于前半段绳子每次遍历有以下几种情况:

1.dp[i] :表示本次不对绳子进行操作,(说明之前所划分的乘积最大)

2.j*dp[i-j] :表示本次将前半段绳子分成 j、i-j两部分(其中dp[i-j]表示其值来源于之前的划分,说明绳子不止划分成两段

3. j*(i-j) :将绳子只划分为两段,即j和i-j (特殊情况?)

每次对以上三种情况取最大值 即可得到乘积最大

代码

#define  _CRT_SECURE_NO_WARNINGS 1
#include <iostream>
using namespace std;
const int N = 1e6 + 10;
int dp[N];
int cut(int n)
{
	//绳子长度2~n
	for (int i = 2; i <= n; i++) {
		for (int j = 1; j <=i; j++)//绳子切割的长度j从 1~i-1
		{
			//每次遍历都会把当前dp[i]最大值赋给dp[i],dp[i]表示局部乘积最大,如果下一个j所对应局部最大值较大就更新
			//然后 j++
			//j*(i-j)表示不剪绳子,此时j表示剩下的一部分
			//j*dp[i-j]表示剪j这么长,对接下来i-j段继续求解最优解
			//三种情况求最大值
			/*
			1.dp[i]
			2.只剪一次 j然后与(i-j)相乘
			3.剪完之后i-j还要继续剪,j*dp[i-j]   j乘以之前的最优解
			*/
			dp[i] = max(dp[i], max(j * dp[i - j], j * (i - j)));
		}
	}
	return dp[n];
}

int main()
{
	int n;
	cin >> n;
	dp[1] = 1;
	dp[2] = 1;
	int res = cut(n);
	cout << res << endl;
	return 0;
}

测试案例

8

运行结果

2*3*3

18

时间复杂度分析

  • 外层循环迭代了 n-2 次(从3到n),内层循环的时间复杂度为 O(i),其中 i 从 1 到 n,因此内层循环的总时间复杂度为 O(n^2)。

速记

三种状态:dp[i]、j*dp[i-j]、j*(i-j)特殊情况

两层循环: i : 2->n

                         j:1->i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

熟人看不到

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值