字符串匹配问题(C++描述)

问题描述:给你两个字符串 haystack 和 needle ,在 haystack 字符串中找出 needle 字符串的第一个匹配项的下标(下标从 0 开始)。如果 needle 不是 haystack 的一部分,则返回  -1 。

       首先看到这个问题,脑子里第一个蹦出来的相关法是通过循环遍历两个字符串的每个元素,将两个字符串的元素进行比较,若找到有完全相同的一段字符串,返回相同子字符串的第一个元素的下标。

        对问题进行化简,则该问题即是“给定两个字符串,一长一短,判断短字符串是否为长字符串的子字符串”。求解该类问题可以使用std::string::find() 方法。

        实现find()方法的算法有很多,以下介绍两种:

        1、线性搜索算法(Linear Search)

        线性搜索算法是最简单的字符串搜索算法,它逐个比较主字符串中的字符,直到找到与子字符串匹配的字符或搜索到主字符串的末尾。实现代码如下:

// 线性搜索算法函数,接受主字符串和子字符串作为输入,返回子字符串在主字符串中的位置,如果找不到则返回-1
int linearSearch(string mainStr, string subStr) {
    // 主字符串的长度
    int n = mainStr.length();
    // 子字符串的长度
    int m = subStr.length();

    // 从主字符串的第一个字符开始遍历,直到找到子字符串或遍历到主字符串的末尾
    for (int i = 0; i <= n - m; i++) {
        // 子字符串的当前字符在主字符串中的位置
        int j;
        // 遍历子字符串的每个字符
        for (j = 0; j < m; j++) {
            // 如果主字符串当前位置的字符与子字符串当前位置的字符不匹配,则跳出内层循环
            if (mainStr[i + j] != subStr[j])
                break;
        }
        // 如果子字符串的所有字符都与主字符串匹配,则返回当前位置
        if (j == m)
            return i;
    }
    // 如果在主字符串中找不到子字符串,则返回-1
    return -1;
}

       

        2、KMP算法(Knuth-Morris-Pratt算法)

        KMP算法是一种改进的字符串搜索算法,它通过预处理子字符串来避免不必要的字符比较。当子字符串与主字符串不匹配时,KMP算法可以跳过一些字符,从而提高搜索效率。实现代码如下:

void computeLPSArray(string pat, int M, int *lps) {
    int len = 0;
    lps[0] = 0; 

    int i = 1;
    while (i < M) {
        if (pat[i] == pat[len]) {
            len++;
            lps[i] = len;
            i++;
        }
        else {
            if (len != 0) {
                len = lps[len - 1];
            }
            else {
                lps[i] = 0;
                i++;
            }
        }
    }
}

int KMPSearch(string pat, string txt) {
    int M = pat.length();
    int N = txt.length();

    int lps[M];
    computeLPSArray(pat, M, lps);

    int i = 0; 
    int j = 0; 
    while (i < N) {
        if (pat[j] == txt[i]) {
            j++;
            i++;
        }
        if (j == M) {
            return i - j;
        }
        else if (i < N && pat[j] != txt[i]) {
            if (j != 0)
                j = lps[j - 1];
            else
                i = i + 1;
        }
    }
    return -1;
}

        

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Large-Swan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值